1
0
Fork 0
mirror of https://github.com/luanti-org/luanti.git synced 2025-08-26 18:21:04 +00:00
luanti/src/util/numeric.h

534 lines
12 KiB
C++

// Luanti
// SPDX-License-Identifier: LGPL-2.1-or-later
// Copyright (C) 2010-2013 celeron55, Perttu Ahola <celeron55@gmail.com>
#pragma once
#include "basic_macros.h"
#include "constants.h"
#include "irrlichttypes.h"
#include "irr_v2d.h"
#include "irr_v3d.h"
#include "irr_aabb3d.h"
#include "SColor.h"
#include <matrix4.h>
#include <cmath>
#include <algorithm>
// Like std::clamp but allows mismatched types
template <typename T, typename T2, typename T3>
[[nodiscard]]
inline constexpr T rangelim(const T &d, const T2 &min, const T3 &max)
{
if (d < (T)min)
return (T)min;
if (d > (T)max)
return (T)max;
return d;
}
// Maximum radius of a block. The magic number is
// sqrt(3.0) / 2.0 in literal form.
static constexpr const f32 BLOCK_MAX_RADIUS = 0.866025403784f * MAP_BLOCKSIZE * BS;
inline s16 getContainerPos(s16 p, s16 d)
{
return (p >= 0 ? p : p - d + 1) / d;
}
inline v2s16 getContainerPos(v2s16 p, s16 d)
{
return v2s16(
getContainerPos(p.X, d),
getContainerPos(p.Y, d)
);
}
inline v3s16 getContainerPos(v3s16 p, s16 d)
{
return v3s16(
getContainerPos(p.X, d),
getContainerPos(p.Y, d),
getContainerPos(p.Z, d)
);
}
inline v2s16 getContainerPos(v2s16 p, v2s16 d)
{
return v2s16(
getContainerPos(p.X, d.X),
getContainerPos(p.Y, d.Y)
);
}
inline v3s16 getContainerPos(v3s16 p, v3s16 d)
{
return v3s16(
getContainerPos(p.X, d.X),
getContainerPos(p.Y, d.Y),
getContainerPos(p.Z, d.Z)
);
}
inline void getContainerPosWithOffset(s16 p, s16 d, s16 &container, s16 &offset)
{
container = (p >= 0 ? p : p - d + 1) / d;
offset = p & (d - 1);
}
inline void getContainerPosWithOffset(const v2s16 &p, s16 d, v2s16 &container, v2s16 &offset)
{
getContainerPosWithOffset(p.X, d, container.X, offset.X);
getContainerPosWithOffset(p.Y, d, container.Y, offset.Y);
}
inline void getContainerPosWithOffset(const v3s16 &p, s16 d, v3s16 &container, v3s16 &offset)
{
getContainerPosWithOffset(p.X, d, container.X, offset.X);
getContainerPosWithOffset(p.Y, d, container.Y, offset.Y);
getContainerPosWithOffset(p.Z, d, container.Z, offset.Z);
}
inline bool isInArea(v3s16 p, s16 d)
{
return (
p.X >= 0 && p.X < d &&
p.Y >= 0 && p.Y < d &&
p.Z >= 0 && p.Z < d
);
}
inline bool isInArea(v2s16 p, s16 d)
{
return (
p.X >= 0 && p.X < d &&
p.Y >= 0 && p.Y < d
);
}
inline bool isInArea(v3s16 p, v3s16 d)
{
return (
p.X >= 0 && p.X < d.X &&
p.Y >= 0 && p.Y < d.Y &&
p.Z >= 0 && p.Z < d.Z
);
}
template <typename T>
inline void sortBoxVerticies(core::vector3d<T> &p1, core::vector3d<T> &p2)
{
if (p1.X > p2.X)
std::swap(p1.X, p2.X);
if (p1.Y > p2.Y)
std::swap(p1.Y, p2.Y);
if (p1.Z > p2.Z)
std::swap(p1.Z, p2.Z);
}
template <typename T>
inline constexpr core::vector3d<T> componentwise_min(const core::vector3d<T> &a,
const core::vector3d<T> &b)
{
return {std::min(a.X, b.X), std::min(a.Y, b.Y), std::min(a.Z, b.Z)};
}
template <typename T>
inline constexpr core::vector3d<T> componentwise_max(const core::vector3d<T> &a,
const core::vector3d<T> &b)
{
return {std::max(a.X, b.X), std::max(a.Y, b.Y), std::max(a.Z, b.Z)};
}
/// @brief Describes a grid with given step, oirginating at (0,0,0)
struct MeshGrid {
u16 cell_size;
u32 getCellVolume() const { return cell_size * cell_size * cell_size; }
/// @brief returns coordinate of mesh cell given coordinate of a map block
s16 getCellPos(s16 p) const
{
return (p - (p < 0) * (cell_size - 1)) / cell_size;
}
/// @brief returns position of mesh cell in the grid given position of a map block
v3s16 getCellPos(v3s16 block_pos) const
{
return v3s16(getCellPos(block_pos.X), getCellPos(block_pos.Y), getCellPos(block_pos.Z));
}
/// @brief returns closest step of the grid smaller than p
s16 getMeshPos(s16 p) const
{
return getCellPos(p) * cell_size;
}
/// @brief Returns coordinates of the origin of the grid cell containing p
v3s16 getMeshPos(v3s16 p) const
{
return v3s16(getMeshPos(p.X), getMeshPos(p.Y), getMeshPos(p.Z));
}
/// @brief Returns true if p is an origin of a cell in the grid.
bool isMeshPos(v3s16 &p) const
{
return p.X % cell_size == 0
&& p.Y % cell_size == 0
&& p.Z % cell_size == 0;
}
/// @brief Returns index of the given offset in a grid cell
/// All offset coordinates must be smaller than the size of the cell
u16 getOffsetIndex(v3s16 offset) const
{
return (offset.Z * cell_size + offset.Y) * cell_size + offset.X;
}
};
/** Returns \p f wrapped to the range [-360, 360]
*
* See test.cpp for example cases.
*
* \note This is also used in cases where degrees wrapped to the range [0, 360]
* is innapropriate (e.g. pitch needs negative values)
*/
[[nodiscard]]
inline float modulo360f(float f)
{
return fmodf(f, 360.0f);
}
/** Returns \p f wrapped to the range [0, 360]
*/
[[nodiscard]]
inline float wrapDegrees_0_360(float f)
{
float value = modulo360f(f);
return value < 0 ? value + 360 : value;
}
/** Returns \p v3f wrapped to the range [0, 360]
*/
[[nodiscard]]
inline v3f wrapDegrees_0_360_v3f(v3f v)
{
v3f value_v3f;
value_v3f.X = modulo360f(v.X);
value_v3f.Y = modulo360f(v.Y);
value_v3f.Z = modulo360f(v.Z);
// Now that values are wrapped, use to get values for certain ranges
value_v3f.X = value_v3f.X < 0 ? value_v3f.X + 360 : value_v3f.X;
value_v3f.Y = value_v3f.Y < 0 ? value_v3f.Y + 360 : value_v3f.Y;
value_v3f.Z = value_v3f.Z < 0 ? value_v3f.Z + 360 : value_v3f.Z;
return value_v3f;
}
/** Returns \p f wrapped to the range [-180, 180]
*/
[[nodiscard]]
inline float wrapDegrees_180(float f)
{
float value = modulo360f(f + 180);
if (value < 0)
value += 360;
return value - 180;
}
/*
Pseudo-random (VC++ rand() sucks)
*/
#define MYRAND_RANGE 0xffffffff
u32 myrand();
void mysrand(u64 seed);
void myrand_bytes(void *out, size_t len);
int myrand_range(int min, int max);
float myrand_range(float min, float max);
float myrand_float();
// Implements a C++11 UniformRandomBitGenerator using the above functions
struct MyRandGenerator {
typedef u32 result_type;
static constexpr result_type min() { return 0; }
static constexpr result_type max() { return MYRAND_RANGE; }
inline result_type operator()() {
return myrand();
}
};
/*
Miscellaneous functions
*/
inline u32 get_bits(u32 x, u32 pos, u32 len)
{
u32 mask = (1 << len) - 1;
return (x >> pos) & mask;
}
inline void set_bits(u32 *x, u32 pos, u32 len, u32 val)
{
u32 mask = (1 << len) - 1;
*x &= ~(mask << pos);
*x |= (val & mask) << pos;
}
inline u32 calc_parity(u32 v)
{
v ^= v >> 16;
v ^= v >> 8;
v ^= v >> 4;
v &= 0xf;
return (0x6996 >> v) & 1;
}
/**
* Calculate MurmurHash64A hash for an arbitrary block of data.
* @param key data to hash (does not need to be aligned)
* @param len length in bytes
* @param seed initial seed value
* @return hash value
*/
[[nodiscard]]
u64 murmur_hash_64_ua(const void *key, size_t len, unsigned int seed);
/**
* @param blockpos_b position of block in block coordinates
* @param camera_pos position of camera in nodes
* @param camera_dir an unit vector pointing to camera direction
* @param range viewing range
* @param distance_ptr return location for distance from the camera
*/
bool isBlockInSight(v3s16 blockpos_b, v3f camera_pos, v3f camera_dir,
f32 camera_fov, f32 range, f32 *distance_ptr=nullptr);
s16 adjustDist(s16 dist, float zoom_fov);
/*
Returns nearest 32-bit integer for given floating point number.
<cmath> and <math.h> in VC++ don't provide round().
*/
[[nodiscard]]
inline s32 myround(f32 f)
{
return (s32)(f < 0.f ? (f - 0.5f) : (f + 0.5f));
}
template <typename T>
[[nodiscard]]
inline constexpr T sqr(T f)
{
return f * f;
}
/*
Returns integer position of node in given floating point position
*/
[[nodiscard]]
inline v3s16 floatToInt(v3f p, f32 d)
{
return v3s16(
(p.X + (p.X > 0 ? d / 2 : -d / 2)) / d,
(p.Y + (p.Y > 0 ? d / 2 : -d / 2)) / d,
(p.Z + (p.Z > 0 ? d / 2 : -d / 2)) / d);
}
/*
Returns integer position of node in given double precision position
*/
[[nodiscard]]
inline v3s16 doubleToInt(v3d p, double d)
{
return v3s16(
(p.X + (p.X > 0 ? d / 2 : -d / 2)) / d,
(p.Y + (p.Y > 0 ? d / 2 : -d / 2)) / d,
(p.Z + (p.Z > 0 ? d / 2 : -d / 2)) / d);
}
/*
Returns floating point position of node in given integer position
*/
[[nodiscard]]
inline v3f intToFloat(v3s16 p, f32 d)
{
return v3f::from(p) * d;
}
// Returns box of a node as in-world box. Usually d=BS
[[nodiscard]]
inline aabb3f getNodeBox(v3s16 p, float d)
{
return aabb3f(
v3f::from(p) * d - 0.5f * d,
v3f::from(p) * d + 0.5f * d
);
}
class IntervalLimiter
{
public:
IntervalLimiter() = default;
/**
@param dtime time from last call to this method
@param wanted_interval interval wanted
@return true if action should be done
*/
[[nodiscard]]
bool step(float dtime, float wanted_interval)
{
m_accumulator += dtime;
if (m_accumulator < wanted_interval)
return false;
m_accumulator -= wanted_interval;
return true;
}
private:
float m_accumulator = 0.0f;
};
/*
Splits a list into "pages". For example, the list [1,2,3,4,5] split
into two pages would be [1,2,3],[4,5]. This function computes the
minimum and maximum indices of a single page.
length: Length of the list that should be split
page: Page number, 1 <= page <= pagecount
pagecount: The number of pages, >= 1
minindex: Receives the minimum index (inclusive).
maxindex: Receives the maximum index (exclusive).
Ensures 0 <= minindex <= maxindex <= length.
*/
inline void paging(u32 length, u32 page, u32 pagecount, u32 &minindex, u32 &maxindex)
{
if (length < 1 || pagecount < 1 || page < 1 || page > pagecount) {
// Special cases or invalid parameters
minindex = maxindex = 0;
} else if(pagecount <= length) {
// Less pages than entries in the list:
// Each page contains at least one entry
minindex = (length * (page-1) + (pagecount-1)) / pagecount;
maxindex = (length * page + (pagecount-1)) / pagecount;
} else {
// More pages than entries in the list:
// Make sure the empty pages are at the end
if (page < length) {
minindex = page-1;
maxindex = page;
} else {
minindex = 0;
maxindex = 0;
}
}
}
constexpr inline bool is_power_of_two(u32 n)
{
return n != 0 && (n & (n - 1)) == 0;
}
// Compute next-higher power of 2 efficiently, e.g. for power-of-2 texture sizes.
// Public Domain: https://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2
constexpr inline u32 npot2(u32 orig)
{
orig--;
orig |= orig >> 1;
orig |= orig >> 2;
orig |= orig >> 4;
orig |= orig >> 8;
orig |= orig >> 16;
return orig + 1;
}
// Distance between two values in a wrapped (circular) system
template<typename T>
inline unsigned wrappedDifference(T a, T b, const T maximum)
{
if (a > b)
std::swap(a, b);
// now b >= a
unsigned s = b - a, l = static_cast<unsigned>(maximum - b) + a + 1;
return std::min(s, l);
}
// Gradual steps towards the target value in a wrapped (circular) system
// using the shorter of both ways
template<typename T>
inline void wrappedApproachShortest(T &current, const T target, const T stepsize,
const T maximum)
{
T delta = target - current;
if (delta < 0)
delta += maximum;
if (delta > stepsize && maximum - delta > stepsize) {
current += (delta < maximum / 2) ? stepsize : -stepsize;
if (current >= maximum)
current -= maximum;
} else {
current = target;
}
}
void setPitchYawRollRad(core::matrix4 &m, v3f rot);
inline void setPitchYawRoll(core::matrix4 &m, v3f rot)
{
setPitchYawRollRad(m, rot * core::DEGTORAD);
}
v3f getPitchYawRollRad(const core::matrix4 &m);
inline v3f getPitchYawRoll(const core::matrix4 &m)
{
return getPitchYawRollRad(m) * core::RADTODEG;
}
// Muliply the RGB value of a color linearly, and clamp to black/white
inline video::SColor multiplyColorValue(const video::SColor &color, float mod)
{
return video::SColor(color.getAlpha(),
core::clamp<u32>(color.getRed() * mod, 0, 255),
core::clamp<u32>(color.getGreen() * mod, 0, 255),
core::clamp<u32>(color.getBlue() * mod, 0, 255));
}
template <typename T>
constexpr inline T numericAbsolute(T v)
{
return v < 0 ? T(-v) : v;
}
template <typename T>
constexpr inline T numericSign(T v)
{
return T(v < 0 ? -1 : (v == 0 ? 0 : 1));
}
template <typename T>
inline constexpr core::vector3d<T> vecAbsolute(const core::vector3d<T> &v)
{
return {
numericAbsolute(v.X),
numericAbsolute(v.Y),
numericAbsolute(v.Z)
};
}
template <typename T>
inline constexpr core::vector3d<T> vecSign(const core::vector3d<T> &v)
{
return {
numericSign(v.X),
numericSign(v.Y),
numericSign(v.Z)
};
}