1
0
Fork 0
mirror of https://github.com/luanti-org/luanti.git synced 2025-06-27 16:36:03 +00:00
luanti/src/client/clientmap.cpp

1671 lines
52 KiB
C++

// Luanti
// SPDX-License-Identifier: LGPL-2.1-or-later
// Copyright (C) 2010-2013 celeron55, Perttu Ahola <celeron55@gmail.com>
#include "clientmap.h"
#include "client.h"
#include "client/mesh.h"
#include "mapblock_mesh.h"
#include <IMaterialRenderer.h>
#include <IVideoDriver.h>
#include <matrix4.h>
#include "mapsector.h"
#include "mapblock.h"
#include "nodedef.h"
#include "profiler.h"
#include "settings.h"
#include "camera.h" // CameraModes
#include "util/basic_macros.h"
#include "util/tracy_wrapper.h"
#include "client/renderingengine.h"
#include <queue>
namespace {
// data structure that groups block meshes by material
struct MeshBufListMaps
{
// first = block pos
using MeshBuf = std::pair<v3s16, scene::IMeshBuffer*>;
using MeshBufList = std::vector<MeshBuf>;
using MeshBufListMap = std::unordered_map<video::SMaterial, MeshBufList>;
std::array<MeshBufListMap, MAX_TILE_LAYERS> maps;
bool empty() const
{
for (auto &map : maps) {
if (!map.empty())
return false;
}
return true;
}
void clear()
{
for (auto &map : maps)
map.clear();
}
void add(scene::IMeshBuffer *buf, v3s16 position, u8 layer)
{
assert(layer < MAX_TILE_LAYERS);
// Append to the correct layer
auto &map = maps[layer];
const video::SMaterial &m = buf->getMaterial();
auto &bufs = map[m]; // default constructs if non-existent
bufs.emplace_back(position, buf);
}
void addFromBlock(v3s16 block_pos, MapBlockMesh *block_mesh,
video::IVideoDriver *driver);
};
// reference to a mesh buffer used when rendering the map.
struct DrawDescriptor {
v3f m_pos; // world translation
bool m_reuse_material:1;
bool m_use_partial_buffer:1;
union {
scene::IMeshBuffer *m_buffer;
const PartialMeshBuffer *m_partial_buffer;
};
DrawDescriptor(v3f pos, scene::IMeshBuffer *buffer, bool reuse_material = true) :
m_pos(pos), m_reuse_material(reuse_material), m_use_partial_buffer(false),
m_buffer(buffer)
{}
DrawDescriptor(v3f pos, const PartialMeshBuffer *buffer) :
m_pos(pos), m_reuse_material(false), m_use_partial_buffer(true),
m_partial_buffer(buffer)
{}
video::SMaterial &getMaterial();
/// @return number of vertices drawn
u32 draw(video::IVideoDriver* driver);
};
using DrawDescriptorList = std::vector<DrawDescriptor>;
/// @brief Append vertices to a mesh buffer
/// @note does not update bounding box!
void appendToMeshBuffer(scene::SMeshBuffer *dst, const scene::IMeshBuffer *src, v3f translate)
{
const size_t vcount = dst->Vertices->Data.size();
const size_t icount = dst->Indices->Data.size();
assert(src->getVertexType() == video::EVT_STANDARD);
const auto vptr = static_cast<const video::S3DVertex*>(src->getVertices());
dst->Vertices->Data.insert(dst->Vertices->Data.end(),
vptr, vptr + src->getVertexCount());
// apply translation
for (size_t j = vcount; j < dst->Vertices->Data.size(); j++)
dst->Vertices->Data[j].Pos += translate;
const auto iptr = src->getIndices();
dst->Indices->Data.insert(dst->Indices->Data.end(),
iptr, iptr + src->getIndexCount());
// fixup indices
if (vcount != 0) {
for (size_t j = icount; j < dst->Indices->Data.size(); j++)
dst->Indices->Data[j] += vcount;
}
}
template <typename T>
inline T subtract_or_zero(T a, T b) {
return b >= a ? T(0) : (a - b);
}
// file-scope thread-local instances of the above two data structures, because
// allocating memory in a hot path can be expensive.
thread_local MeshBufListMaps tl_meshbuflistmaps;
thread_local DrawDescriptorList tl_drawdescriptorlist;
}
void CachedMeshBuffer::drop()
{
for (auto *it : buf)
it->drop();
buf.clear();
}
/*
ClientMap
*/
static void on_settings_changed(const std::string &name, void *data)
{
static_cast<ClientMap*>(data)->onSettingChanged(name, false);
}
static const std::string ClientMap_settings[] = {
"trilinear_filter",
"bilinear_filter",
"anisotropic_filter",
"transparency_sorting_group_by_buffers",
"transparency_sorting_distance",
"occlusion_culler",
"enable_raytraced_culling",
};
ClientMap::ClientMap(
Client *client,
RenderingEngine *rendering_engine,
MapDrawControl &control,
s32 id
):
Map(client),
scene::ISceneNode(rendering_engine->get_scene_manager()->getRootSceneNode(),
rendering_engine->get_scene_manager(), id),
m_client(client),
m_rendering_engine(rendering_engine),
m_control(control),
m_drawlist(MapBlockComparer(v3s16(0,0,0)))
{
/*
* @Liso: Sadly C++ doesn't have introspection, so the only way we have to know
* the class is whith a name ;) Name property cames from ISceneNode base class.
*/
Name = "ClientMap";
setAutomaticCulling(scene::EAC_OFF);
for (const auto &name : ClientMap_settings)
g_settings->registerChangedCallback(name, on_settings_changed, this);
// load all settings at once
onSettingChanged("", true);
}
void ClientMap::onSettingChanged(std::string_view name, bool all)
{
if (all || name == "trilinear_filter")
m_cache_trilinear_filter = g_settings->getBool("trilinear_filter");
if (all || name == "bilinear_filter")
m_cache_bilinear_filter = g_settings->getBool("bilinear_filter");
if (all || name == "anisotropic_filter")
m_cache_anistropic_filter = g_settings->getBool("anisotropic_filter");
if (all || name == "transparency_sorting_group_by_buffers")
m_cache_transparency_sorting_group_by_buffers =
g_settings->getBool("transparency_sorting_group_by_buffers");
if (all || name == "transparency_sorting_distance")
m_cache_transparency_sorting_distance = g_settings->getU16("transparency_sorting_distance");
if (all || name == "occlusion_culler")
m_loops_occlusion_culler = g_settings->get("occlusion_culler") == "loops";
if (all || name == "enable_raytraced_culling")
m_enable_raytraced_culling = g_settings->getBool("enable_raytraced_culling");
}
ClientMap::~ClientMap()
{
g_settings->deregisterAllChangedCallbacks(this);
for (auto &it : m_dynamic_buffers)
it.second.drop();
}
void ClientMap::updateCamera(v3f pos, v3f dir, f32 fov, v3s16 offset, video::SColor light_color)
{
v3s16 previous_camera_offset = m_camera_offset;
v3s16 previous_node = floatToInt(m_camera_position, BS) + m_camera_offset;
v3s16 previous_block = getContainerPos(previous_node, MAP_BLOCKSIZE);
m_camera_position = pos;
m_camera_direction = dir;
m_camera_fov = fov;
m_camera_offset = offset;
m_camera_light_color = light_color;
v3s16 current_node = floatToInt(m_camera_position, BS) + m_camera_offset;
v3s16 current_block = getContainerPos(current_node, MAP_BLOCKSIZE);
// reorder the blocks when camera crosses block boundary
if (previous_block != current_block)
m_needs_update_drawlist = true;
// reorder transparent meshes when camera crosses node boundary
if (previous_node != current_node)
m_needs_update_transparent_meshes = true;
// drop merged mesh cache when camera offset changes
if (previous_camera_offset != m_camera_offset) {
for (auto &it : m_dynamic_buffers)
it.second.drop();
m_dynamic_buffers.clear();
}
}
MapSector * ClientMap::emergeSector(v2s16 p2d)
{
// Check that it doesn't exist already
MapSector *sector = getSectorNoGenerate(p2d);
// Create it if it does not exist yet
if (!sector) {
sector = new MapSector(this, p2d, m_gamedef);
m_sectors[p2d] = sector;
}
return sector;
}
void ClientMap::OnRegisterSceneNode()
{
if(IsVisible)
{
SceneManager->registerNodeForRendering(this, scene::ESNRP_SOLID);
SceneManager->registerNodeForRendering(this, scene::ESNRP_TRANSPARENT);
}
ISceneNode::OnRegisterSceneNode();
// It's not needed to register this node to the shadow renderer
// we have other way to find it
}
void ClientMap::render()
{
video::IVideoDriver* driver = SceneManager->getVideoDriver();
driver->setTransform(video::ETS_WORLD, AbsoluteTransformation);
renderMap(driver, SceneManager->getSceneNodeRenderPass());
}
void ClientMap::getBlocksInViewRange(v3s16 cam_pos_nodes,
v3s16 *p_blocks_min, v3s16 *p_blocks_max, float range)
{
if (range <= 0.0f)
range = m_control.wanted_range;
v3s16 box_nodes_d = range * v3s16(1, 1, 1);
// Define p_nodes_min/max as v3s32 because 'cam_pos_nodes -/+ box_nodes_d'
// can exceed the range of v3s16 when a large view range is used near the
// world edges.
v3s32 p_nodes_min(
cam_pos_nodes.X - box_nodes_d.X,
cam_pos_nodes.Y - box_nodes_d.Y,
cam_pos_nodes.Z - box_nodes_d.Z);
v3s32 p_nodes_max(
cam_pos_nodes.X + box_nodes_d.X,
cam_pos_nodes.Y + box_nodes_d.Y,
cam_pos_nodes.Z + box_nodes_d.Z);
// Take a fair amount as we will be dropping more out later
// Umm... these additions are a bit strange but they are needed.
*p_blocks_min = v3s16(
p_nodes_min.X / MAP_BLOCKSIZE - 3,
p_nodes_min.Y / MAP_BLOCKSIZE - 3,
p_nodes_min.Z / MAP_BLOCKSIZE - 3);
*p_blocks_max = v3s16(
p_nodes_max.X / MAP_BLOCKSIZE + 1,
p_nodes_max.Y / MAP_BLOCKSIZE + 1,
p_nodes_max.Z / MAP_BLOCKSIZE + 1);
}
class MapBlockFlags
{
public:
static constexpr u16 CHUNK_EDGE = 8;
static constexpr u16 CHUNK_MASK = CHUNK_EDGE - 1;
static constexpr std::size_t CHUNK_VOLUME = CHUNK_EDGE * CHUNK_EDGE * CHUNK_EDGE; // volume of a chunk
MapBlockFlags(v3s16 min_pos, v3s16 max_pos)
: min_pos(min_pos), volume((max_pos - min_pos) / CHUNK_EDGE + 1)
{
chunks.resize(volume.X * volume.Y * volume.Z);
}
class Chunk
{
public:
inline u8 &getBits(v3s16 pos)
{
std::size_t address = getAddress(pos);
return bits[address];
}
private:
inline std::size_t getAddress(v3s16 pos) {
std::size_t address = (pos.X & CHUNK_MASK) + (pos.Y & CHUNK_MASK) * CHUNK_EDGE + (pos.Z & CHUNK_MASK) * (CHUNK_EDGE * CHUNK_EDGE);
return address;
}
std::array<u8, CHUNK_VOLUME> bits;
};
Chunk &getChunk(v3s16 pos)
{
v3s16 delta = (pos - min_pos) / CHUNK_EDGE;
std::size_t address = delta.X + delta.Y * volume.X + delta.Z * volume.X * volume.Y;
Chunk *chunk = chunks[address].get();
if (!chunk) {
chunk = new Chunk();
chunks[address].reset(chunk);
}
return *chunk;
}
private:
std::vector<std::unique_ptr<Chunk>> chunks;
v3s16 min_pos;
v3s16 volume;
};
void ClientMap::updateDrawList()
{
ScopeProfiler sp(g_profiler, "CM::updateDrawList()", SPT_AVG);
m_needs_update_drawlist = false;
for (auto &i : m_drawlist) {
MapBlock *block = i.second;
block->refDrop();
}
m_drawlist.clear();
for (auto &block : m_keeplist) {
block->refDrop();
}
m_keeplist.clear();
const v3s16 cam_pos_nodes = floatToInt(m_camera_position, BS);
v3s16 p_blocks_min;
v3s16 p_blocks_max;
getBlocksInViewRange(cam_pos_nodes, &p_blocks_min, &p_blocks_max);
// Number of blocks occlusion culled
u32 blocks_occlusion_culled = 0;
// Number of blocks frustum culled
u32 blocks_frustum_culled = 0;
MeshGrid mesh_grid = m_client->getMeshGrid();
// No occlusion culling when free_move is on and camera is inside ground
// No occlusion culling for chunk sizes of 4 and above
// because the current occlusion culling test is highly inefficient at these sizes
bool occlusion_culling_enabled = mesh_grid.cell_size < 4;
if (m_control.allow_noclip) {
MapNode n = getNode(cam_pos_nodes);
if (n.getContent() == CONTENT_IGNORE || m_nodedef->get(n).solidness == 2)
occlusion_culling_enabled = false;
}
const v3s16 camera_block = getContainerPos(cam_pos_nodes, MAP_BLOCKSIZE);
m_drawlist = decltype(m_drawlist)(MapBlockComparer(camera_block));
auto is_frustum_culled = m_client->getCamera()->getFrustumCuller();
// Uncomment to debug occluded blocks in the wireframe mode
// TODO: Include this as a flag for an extended debugging setting
// if (occlusion_culling_enabled && m_control.show_wireframe)
// occlusion_culling_enabled = porting::getTimeS() & 1;
// Set of mesh holding blocks
std::set<v3s16> shortlist;
/*
When range_all is enabled, enumerate all blocks visible in the
frustum and display them.
*/
if (m_control.range_all || m_loops_occlusion_culler) {
// Number of blocks currently loaded by the client
u32 blocks_loaded = 0;
// Number of blocks with mesh in rendering range
u32 blocks_in_range_with_mesh = 0;
MapBlockVect sectorblocks;
for (auto &sector_it : m_sectors) {
const MapSector *sector = sector_it.second;
v2s16 sp = sector->getPos();
blocks_loaded += sector->size();
if (!m_control.range_all) {
if (sp.X < p_blocks_min.X || sp.X > p_blocks_max.X ||
sp.Y < p_blocks_min.Z || sp.Y > p_blocks_max.Z)
continue;
}
// Loop through blocks in sector
for (const auto &entry : sector->getBlocks()) {
MapBlock *block = entry.second.get();
MapBlockMesh *mesh = block->mesh;
// Calculate the coordinates for range and frustum culling
v3f mesh_sphere_center;
f32 mesh_sphere_radius;
v3s16 block_pos_nodes = block->getPosRelative();
if (mesh) {
mesh_sphere_center = intToFloat(block_pos_nodes, BS)
+ mesh->getBoundingSphereCenter();
mesh_sphere_radius = mesh->getBoundingRadius();
} else {
mesh_sphere_center = intToFloat(block_pos_nodes, BS)
+ v3f((MAP_BLOCKSIZE * 0.5f - 0.5f) * BS);
mesh_sphere_radius = 0.0f;
}
// First, perform a simple distance check.
if (!m_control.range_all &&
mesh_sphere_center.getDistanceFrom(m_camera_position) >
m_control.wanted_range * BS + mesh_sphere_radius)
continue; // Out of range, skip.
// Keep the block alive as long as it is in range.
block->resetUsageTimer();
blocks_in_range_with_mesh++;
// Frustum culling
// Only do coarse culling here, to account for fast camera movement.
// This is needed because this function is not called every frame.
float frustum_cull_extra_radius = 300.0f;
if (is_frustum_culled(mesh_sphere_center,
mesh_sphere_radius + frustum_cull_extra_radius)) {
blocks_frustum_culled++;
continue;
}
// Raytraced occlusion culling - send rays from the camera to the block's corners
if (!m_control.range_all && occlusion_culling_enabled && m_enable_raytraced_culling &&
mesh &&
isMeshOccluded(block, mesh_grid.cell_size, cam_pos_nodes)) {
blocks_occlusion_culled++;
continue;
}
if (mesh_grid.cell_size > 1) {
// Block meshes are stored in the corner block of a chunk
// (where all coordinate are divisible by the chunk size)
// Add them to the de-dup set.
shortlist.emplace(mesh_grid.getMeshPos(block->getPos()));
// All other blocks we can grab and add to the keeplist right away.
m_keeplist.push_back(block);
block->refGrab();
} else if (mesh) {
// without mesh chunking we can add the block to the drawlist
block->refGrab();
m_drawlist.emplace(block->getPos(), block);
}
}
}
g_profiler->avg("MapBlock meshes in range [#]", blocks_in_range_with_mesh);
g_profiler->avg("MapBlocks loaded [#]", blocks_loaded);
} else {
// Blocks visited by the algorithm
u32 blocks_visited = 0;
// Block sides that were not traversed
u32 sides_skipped = 0;
std::queue<v3s16> blocks_to_consider;
v3s16 camera_mesh = mesh_grid.getMeshPos(camera_block);
v3s16 camera_cell = mesh_grid.getCellPos(camera_block);
// Bits per block:
// [ visited | 0 | 0 | 0 | 0 | Z visible | Y visible | X visible ]
MapBlockFlags meshes_seen(mesh_grid.getCellPos(p_blocks_min), mesh_grid.getCellPos(p_blocks_max) + 1);
// Start breadth-first search with the block the camera is in
blocks_to_consider.push(camera_mesh);
meshes_seen.getChunk(camera_cell).getBits(camera_cell) = 0x07; // mark all sides as visible
// Recursively walk the space and pick mapblocks for drawing
while (!blocks_to_consider.empty()) {
v3s16 block_coord = blocks_to_consider.front();
blocks_to_consider.pop();
v3s16 cell_coord = mesh_grid.getCellPos(block_coord);
auto &flags = meshes_seen.getChunk(cell_coord).getBits(cell_coord);
// Only visit each block once (it may have been queued up to three times)
if ((flags & 0x80) == 0x80)
continue;
flags |= 0x80;
blocks_visited++;
// Get the sector, block and mesh
MapSector *sector = this->getSectorNoGenerate(v2s16(block_coord.X, block_coord.Z));
MapBlock *block = sector ? sector->getBlockNoCreateNoEx(block_coord.Y) : nullptr;
MapBlockMesh *mesh = block ? block->mesh : nullptr;
// Calculate the coordinates for range and frustum culling
v3f mesh_sphere_center;
f32 mesh_sphere_radius;
v3s16 block_pos_nodes = block_coord * MAP_BLOCKSIZE;
if (mesh) {
mesh_sphere_center = intToFloat(block_pos_nodes, BS)
+ mesh->getBoundingSphereCenter();
mesh_sphere_radius = mesh->getBoundingRadius();
} else {
mesh_sphere_center = intToFloat(block_pos_nodes, BS) + v3f((mesh_grid.cell_size * MAP_BLOCKSIZE * 0.5f - 0.5f) * BS);
mesh_sphere_radius = 0.87f * mesh_grid.cell_size * MAP_BLOCKSIZE * BS;
}
// First, perform a simple distance check.
if (!m_control.range_all &&
mesh_sphere_center.getDistanceFrom(intToFloat(cam_pos_nodes, BS)) >
m_control.wanted_range * BS + mesh_sphere_radius)
continue; // Out of range, skip.
// Frustum culling
// Only do coarse culling here, to account for fast camera movement.
// This is needed because this function is not called every frame.
float frustum_cull_extra_radius = 300.0f;
if (is_frustum_culled(mesh_sphere_center,
mesh_sphere_radius + frustum_cull_extra_radius)) {
blocks_frustum_culled++;
continue;
}
// Calculate the vector from the camera block to the current block
// We use it to determine through which sides of the current block we can continue the search
v3s16 look = block_coord - camera_mesh;
// Occluded near sides will further occlude the far sides
u8 visible_outer_sides = flags & 0x07;
// Raytraced occlusion culling - send rays from the camera to the block's corners
if (occlusion_culling_enabled && m_enable_raytraced_culling &&
block && mesh &&
visible_outer_sides != 0x07 && isMeshOccluded(block, mesh_grid.cell_size, cam_pos_nodes)) {
blocks_occlusion_culled++;
continue;
}
if (mesh_grid.cell_size > 1) {
// Block meshes are stored in the corner block of a chunk
// (where all coordinate are divisible by the chunk size)
// Add them to the de-dup set.
shortlist.emplace(block_coord.X, block_coord.Y, block_coord.Z);
// All other blocks we can grab and add to the keeplist right away.
if (block) {
m_keeplist.push_back(block);
block->refGrab();
}
} else if (mesh) {
// without mesh chunking we can add the block to the drawlist
block->refGrab();
m_drawlist.emplace(block_coord, block);
}
// Decide which sides to traverse next or to block away
// First, find the near sides that would occlude the far sides
// * A near side can itself be occluded by a nearby block (the test above ^^)
// * A near side can be visible but fully opaque by itself (e.g. ground at the 0 level)
// mesh solid sides are +Z-Z+Y-Y+X-X
// if we are inside the block's coordinates on an axis,
// treat these sides as opaque, as they should not allow to reach the far sides
u8 block_inner_sides = (look.X == 0 ? 3 : 0) |
(look.Y == 0 ? 12 : 0) |
(look.Z == 0 ? 48 : 0);
// get the mask for the sides that are relevant based on the direction
u8 near_inner_sides = (look.X > 0 ? 1 : 2) |
(look.Y > 0 ? 4 : 8) |
(look.Z > 0 ? 16 : 32);
// This bitset is +Z-Z+Y-Y+X-X (See MapBlockMesh), and axis is XYZ.
// Get he block's transparent sides
u8 transparent_sides = (occlusion_culling_enabled && block) ? ~block->solid_sides : 0x3F;
// compress block transparent sides to ZYX mask of see-through axes
u8 near_transparency = (block_inner_sides == 0x3F) ? near_inner_sides : (transparent_sides & near_inner_sides);
// when we are inside the camera block, do not block any sides
if (block_inner_sides == 0x3F)
block_inner_sides = 0;
near_transparency &= ~block_inner_sides & 0x3F;
near_transparency |= (near_transparency >> 1);
near_transparency = (near_transparency & 1) |
((near_transparency >> 1) & 2) |
((near_transparency >> 2) & 4);
// combine with known visible sides that matter
near_transparency &= visible_outer_sides;
// The rule for any far side to be visible:
// * Any of the adjacent near sides is transparent (different axes)
// * The opposite near side (same axis) is transparent, if it is the dominant axis of the look vector
// Calculate vector from camera to mapblock center. Because we only need relation between
// coordinates we scale by 2 to avoid precision loss.
v3s16 precise_look = 2 * (block_pos_nodes - cam_pos_nodes) + mesh_grid.cell_size * MAP_BLOCKSIZE - 1;
// dominant axis flag
u8 dominant_axis = (abs(precise_look.X) > abs(precise_look.Y) && abs(precise_look.X) > abs(precise_look.Z)) |
((abs(precise_look.Y) > abs(precise_look.Z) && abs(precise_look.Y) > abs(precise_look.X)) << 1) |
((abs(precise_look.Z) > abs(precise_look.X) && abs(precise_look.Z) > abs(precise_look.Y)) << 2);
// Queue next blocks for processing:
// - Examine "far" sides of the current blocks, i.e. never move towards the camera
// - Only traverse the sides that are not occluded
// - Only traverse the sides that are not opaque
// When queueing, mark the relevant side on the next block as 'visible'
for (s16 axis = 0; axis < 3; axis++) {
// Select a bit from transparent_sides for the side
u8 far_side_mask = 1 << (2 * axis);
// axis flag
u8 my_side = 1 << axis;
u8 adjacent_sides = my_side ^ 0x07;
auto traverse_far_side = [&](s8 next_pos_offset) {
// far side is visible if adjacent near sides are transparent, or if opposite side on dominant axis is transparent
bool side_visible = ((near_transparency & adjacent_sides) | (near_transparency & my_side & dominant_axis)) != 0;
side_visible = side_visible && ((far_side_mask & transparent_sides) != 0);
v3s16 next_pos = block_coord;
next_pos[axis] += next_pos_offset;
v3s16 next_cell = mesh_grid.getCellPos(next_pos);
// If a side is a see-through, mark the next block's side as visible, and queue
if (side_visible) {
auto &next_flags = meshes_seen.getChunk(next_cell).getBits(next_cell);
next_flags |= my_side;
blocks_to_consider.push(next_pos);
}
else {
sides_skipped++;
}
};
// Test the '-' direction of the axis
if (look[axis] <= 0 && block_coord[axis] > p_blocks_min[axis])
traverse_far_side(-mesh_grid.cell_size);
// Test the '+' direction of the axis
far_side_mask <<= 1;
if (look[axis] >= 0 && block_coord[axis] < p_blocks_max[axis])
traverse_far_side(+mesh_grid.cell_size);
}
}
g_profiler->avg("MapBlocks sides skipped [#]", sides_skipped);
g_profiler->avg("MapBlocks examined [#]", blocks_visited);
}
g_profiler->avg("MapBlocks shortlist [#]", shortlist.size());
assert(m_drawlist.empty() || shortlist.empty());
for (auto pos : shortlist) {
MapBlock *block = getBlockNoCreateNoEx(pos);
if (block) {
block->refGrab();
m_drawlist.emplace(pos, block);
}
}
g_profiler->avg("MapBlocks occlusion culled [#]", blocks_occlusion_culled);
g_profiler->avg("MapBlocks frustum culled [#]", blocks_frustum_culled);
g_profiler->avg("MapBlocks drawn [#]", m_drawlist.size());
}
void ClientMap::touchMapBlocks()
{
if (m_control.range_all || m_loops_occlusion_culler)
return;
ScopeProfiler sp(g_profiler, "CM::touchMapBlocks()", SPT_AVG);
v3s16 cam_pos_nodes = floatToInt(m_camera_position, BS);
v3s16 p_blocks_min;
v3s16 p_blocks_max;
getBlocksInViewRange(cam_pos_nodes, &p_blocks_min, &p_blocks_max);
// Number of blocks currently loaded by the client
u32 blocks_loaded = 0;
// Number of blocks with mesh in rendering range
u32 blocks_in_range_with_mesh = 0;
for (const auto &sector_it : m_sectors) {
const MapSector *sector = sector_it.second;
v2s16 sp = sector->getPos();
blocks_loaded += sector->size();
if (!m_control.range_all) {
if (sp.X < p_blocks_min.X || sp.X > p_blocks_max.X ||
sp.Y < p_blocks_min.Z || sp.Y > p_blocks_max.Z)
continue;
}
/*
Loop through blocks in sector
*/
for (const auto &entry : sector->getBlocks()) {
MapBlock *block = entry.second.get();
MapBlockMesh *mesh = block->mesh;
// Calculate the coordinates for range and frustum culling
v3f mesh_sphere_center;
f32 mesh_sphere_radius;
v3s16 block_pos_nodes = block->getPosRelative();
if (mesh) {
mesh_sphere_center = intToFloat(block_pos_nodes, BS)
+ mesh->getBoundingSphereCenter();
mesh_sphere_radius = mesh->getBoundingRadius();
} else {
mesh_sphere_center = intToFloat(block_pos_nodes, BS)
+ v3f((MAP_BLOCKSIZE * 0.5f - 0.5f) * BS);
mesh_sphere_radius = 0.0f;
}
// First, perform a simple distance check.
if (!m_control.range_all &&
mesh_sphere_center.getDistanceFrom(m_camera_position) >
m_control.wanted_range * BS + mesh_sphere_radius)
continue; // Out of range, skip.
// Keep the block alive as long as it is in range.
block->resetUsageTimer();
blocks_in_range_with_mesh++;
}
}
g_profiler->avg("MapBlock meshes in range [#]", blocks_in_range_with_mesh);
g_profiler->avg("MapBlocks loaded [#]", blocks_loaded);
}
void MeshBufListMaps::addFromBlock(v3s16 block_pos, MapBlockMesh *block_mesh,
video::IVideoDriver *driver)
{
for (int layer = 0; layer < MAX_TILE_LAYERS; layer++) {
scene::IMesh *mesh = block_mesh->getMesh(layer);
assert(mesh);
u32 c = mesh->getMeshBufferCount();
for (u32 i = 0; i < c; i++) {
scene::IMeshBuffer *buf = mesh->getMeshBuffer(i);
auto &material = buf->getMaterial();
auto *rnd = driver->getMaterialRenderer(material.MaterialType);
bool transparent = rnd && rnd->isTransparent();
if (!transparent)
add(buf, block_pos, layer);
}
}
}
/**
* Copy a list of mesh buffers into the draw order, while potentially
* merging some.
* @param src buffer list
* @param dst draw order
* @param get_world_pos returns translation for a buffer
* @param dynamic_buffers cache structure for merged buffers
* @return number of buffers that were merged
*/
template <typename F>
static u32 transformBuffersToDrawOrder(
const MeshBufListMaps::MeshBufList &src, DrawDescriptorList &draw_order,
F get_world_pos, CachedMeshBuffers &dynamic_buffers)
{
/**
* This is a tradeoff between time spent merging buffers and time spent
* due to excess drawcalls.
* Testing has shown that the ideal value is in the low hundreds, as extra
* CPU work quickly eats up the benefits (though alleviated by a cache).
* In MTG landscape scenes this was found to save around 20-40% of drawcalls.
*
* NOTE: if you attempt to test this with quicktune, it won't give you valid
* results since HW buffers stick around and Irrlicht handles large amounts
* inefficiently.
*/
const u32 target_min_vertices = g_settings->getU32("mesh_buffer_min_vertices");
const auto draw_order_pre = draw_order.size();
auto *driver = RenderingEngine::get_video_driver();
// check if we can even merge anything
u32 can_merge = 0;
u32 total_vtx = 0, total_idx = 0;
for (auto &pair : src) {
if (pair.second->getVertexCount() < target_min_vertices) {
can_merge++;
total_vtx += pair.second->getVertexCount();
total_idx += pair.second->getIndexCount();
}
}
// iterate in reverse to get closest blocks first
std::vector<std::pair<v3f, scene::IMeshBuffer*>> to_merge;
for (auto it = src.rbegin(); it != src.rend(); ++it) {
v3f translate = get_world_pos(it->first);
auto *buf = it->second;
if (can_merge < 2 || buf->getVertexCount() >= target_min_vertices) {
draw_order.emplace_back(translate, buf);
continue;
}
to_merge.emplace_back(translate, buf);
}
/*
* Tracking buffers, their contents and modifications would be quite complicated
* so we opt for something simple here: We identify buffers by their location
* in memory.
* This imposes the following assumptions:
* - buffers don't move in memory
* - vertex and index data is immutable
* - we know when to invalidate (invalidateMapBlockMesh does this)
*/
std::sort(to_merge.begin(), to_merge.end(), [] (const auto &l, const auto &r) {
return static_cast<void*>(l.second) < static_cast<void*>(r.second);
});
// cache key is a string of sorted raw pointers
std::string key;
key.reserve(sizeof(void*) * to_merge.size());
for (auto &it : to_merge)
key.append(reinterpret_cast<const char*>(&it.second), sizeof(void*));
// try to take from cache
auto it2 = dynamic_buffers.find(key);
if (it2 != dynamic_buffers.end()) {
g_profiler->avg("CM::transformBuffersToDO: cache hit rate", 1);
const auto &use_mat = to_merge.front().second->getMaterial();
assert(!it2->second.buf.empty());
for (auto *buf : it2->second.buf) {
// material is not part of the cache key, so make sure it still matches
buf->getMaterial() = use_mat;
draw_order.emplace_back(v3f(0), buf);
}
it2->second.age = 0;
} else if (!key.empty()) {
g_profiler->avg("CM::transformBuffersToDO: cache hit rate", 0);
// merge and save to cache
auto &put_buffers = dynamic_buffers[key];
scene::SMeshBuffer *tmp = nullptr;
const auto &finish_buf = [&] () {
if (tmp) {
draw_order.emplace_back(v3f(0), tmp);
total_vtx = subtract_or_zero(total_vtx, tmp->getVertexCount());
total_idx = subtract_or_zero(total_idx, tmp->getIndexCount());
// Upload buffer here explicitly to give the driver some
// extra time to get it ready before drawing.
tmp->setHardwareMappingHint(scene::EHM_STREAM);
driver->updateHardwareBuffer(tmp->getVertexBuffer());
driver->updateHardwareBuffer(tmp->getIndexBuffer());
}
tmp = nullptr;
};
for (auto &it : to_merge) {
v3f translate = it.first;
auto *buf = it.second;
bool new_buffer = false;
if (!tmp)
new_buffer = true;
else if (tmp->getVertexCount() + buf->getVertexCount() > U16_MAX)
new_buffer = true;
if (new_buffer) {
finish_buf();
tmp = new scene::SMeshBuffer();
put_buffers.buf.push_back(tmp);
assert(tmp->getPrimitiveType() == buf->getPrimitiveType());
tmp->Material = buf->getMaterial();
// preallocate approximately
tmp->Vertices->Data.reserve(MYMIN(U16_MAX, total_vtx));
tmp->Indices->Data.reserve(total_idx);
}
appendToMeshBuffer(tmp, buf, translate);
}
finish_buf();
assert(!put_buffers.buf.empty());
}
// first call needs to set the material
if (draw_order.size() > draw_order_pre)
draw_order[draw_order_pre].m_reuse_material = false;
return can_merge < 2 ? 0 : can_merge;
}
void ClientMap::renderMap(video::IVideoDriver* driver, s32 pass)
{
ZoneScoped;
const bool is_transparent_pass = pass == scene::ESNRP_TRANSPARENT;
std::string prefix;
if (pass == scene::ESNRP_SOLID)
prefix = "renderMap(SOLID): ";
else
prefix = "renderMap(TRANS): ";
/*
Get animation parameters
*/
const float animation_time = m_client->getAnimationTime();
const int crack = m_client->getCrackLevel();
const u32 daynight_ratio = m_client->getEnv().getDayNightRatio();
const v3f camera_position = m_camera_position;
const auto mesh_grid = m_client->getMeshGrid();
// Gets world position from block map position
const auto get_block_wpos = [&] (v3s16 pos) -> v3f {
return intToFloat(mesh_grid.getMeshPos(pos) * MAP_BLOCKSIZE - m_camera_offset, BS);
};
u32 merged_count = 0;
// For limiting number of mesh animations per frame
u32 mesh_animate_count = 0;
/*
Update transparent meshes
*/
if (is_transparent_pass)
updateTransparentMeshBuffers();
/*
Collect everything we need to draw
*/
TimeTaker tt_collect("");
MeshBufListMaps &grouped_buffers = tl_meshbuflistmaps;
DrawDescriptorList &draw_order = tl_drawdescriptorlist;
grouped_buffers.clear();
draw_order.clear();
auto is_frustum_culled = m_client->getCamera()->getFrustumCuller();
for (auto &i : m_drawlist) {
const v3s16 block_pos = i.first;
MapBlock *block = i.second;
MapBlockMesh *block_mesh = block->mesh;
// If the mesh of the block happened to get deleted, ignore it
if (!block_mesh)
continue;
// Do exact frustum culling
// (The one in updateDrawList is only coarse.)
v3f mesh_sphere_center = intToFloat(block->getPosRelative(), BS)
+ block_mesh->getBoundingSphereCenter();
f32 mesh_sphere_radius = block_mesh->getBoundingRadius();
if (is_frustum_culled(mesh_sphere_center, mesh_sphere_radius))
continue;
// Mesh animation
if (pass == scene::ESNRP_SOLID) {
// 50 nodes is pretty arbitrary but it should work somewhat nicely
float distance_sq = camera_position.getDistanceFromSQ(mesh_sphere_center);
bool faraway = distance_sq >= std::pow(BS * 50 + mesh_sphere_radius, 2.0f);
if (block_mesh->isAnimationForced() || !faraway ||
mesh_animate_count < (m_control.range_all ? 200 : 50)) {
bool animated = block_mesh->animate(faraway, animation_time,
crack, daynight_ratio);
if (animated)
mesh_animate_count++;
} else {
block_mesh->decreaseAnimationForceTimer();
}
}
/*
Get the meshbuffers of the block
*/
if (is_transparent_pass) {
// In transparent pass, the mesh will give us
// the partial buffers in the correct order
for (auto &buffer : block_mesh->getTransparentBuffers())
draw_order.emplace_back(get_block_wpos(block_pos), &buffer);
} else {
// Otherwise, group them
grouped_buffers.addFromBlock(block_pos, block_mesh, driver);
}
}
assert(!is_transparent_pass || grouped_buffers.empty());
for (auto &map : grouped_buffers.maps) {
for (auto &list : map) {
merged_count += transformBuffersToDrawOrder(
list.second, draw_order, get_block_wpos, m_dynamic_buffers);
}
}
g_profiler->avg(prefix + "collecting [ms]", tt_collect.stop(true));
TimeTaker tt_draw("");
core::matrix4 m; // Model matrix
u32 vertex_count = 0;
u32 drawcall_count = 0;
u32 material_swaps = 0;
// Render all mesh buffers in order
drawcall_count += draw_order.size();
for (auto &descriptor : draw_order) {
if (!descriptor.m_reuse_material) {
auto &material = descriptor.getMaterial();
// Apply filter settings
material.forEachTexture([this] (auto &tex) {
setMaterialFilters(tex, m_cache_bilinear_filter, m_cache_trilinear_filter,
m_cache_anistropic_filter);
});
material.Wireframe = m_control.show_wireframe;
// pass the shadow map texture to the buffer texture
ShadowRenderer *shadow = m_rendering_engine->get_shadow_renderer();
if (shadow && shadow->is_active()) {
auto &layer = material.TextureLayers[ShadowRenderer::TEXTURE_LAYER_SHADOW];
layer.Texture = shadow->get_texture();
layer.TextureWrapU = video::E_TEXTURE_CLAMP::ETC_CLAMP_TO_EDGE;
layer.TextureWrapV = video::E_TEXTURE_CLAMP::ETC_CLAMP_TO_EDGE;
// Do not enable filter on shadow texture to avoid visual artifacts
// with colored shadows.
// Filtering is done in shader code anyway
layer.MinFilter = video::ETMINF_NEAREST_MIPMAP_NEAREST;
layer.MagFilter = video::ETMAGF_NEAREST;
layer.AnisotropicFilter = 0;
}
driver->setMaterial(material);
++material_swaps;
material.TextureLayers[ShadowRenderer::TEXTURE_LAYER_SHADOW].Texture = nullptr;
}
m.setTranslation(descriptor.m_pos);
driver->setTransform(video::ETS_WORLD, m);
vertex_count += descriptor.draw(driver);
}
g_profiler->avg(prefix + "draw meshes [ms]", tt_draw.stop(true));
if (pass == scene::ESNRP_SOLID) {
g_profiler->avg("renderMap(): animated meshes [#]", mesh_animate_count);
g_profiler->avg(prefix + "merged buffers [#]", merged_count);
u32 cached_count = 0;
for (auto it = m_dynamic_buffers.begin(); it != m_dynamic_buffers.end(); ) {
// prune aggressively since every new/changed block or camera
// rotation can have big effects
if (++it->second.age > 1) {
it->second.drop();
it = m_dynamic_buffers.erase(it);
} else {
cached_count += it->second.buf.size();
it++;
}
}
g_profiler->avg(prefix + "merged buffers in cache [#]", cached_count);
}
if (pass == scene::ESNRP_TRANSPARENT) {
g_profiler->avg("renderMap(): transparent buffers [#]", draw_order.size());
}
g_profiler->avg(prefix + "vertices drawn [#]", vertex_count);
g_profiler->avg(prefix + "drawcalls [#]", drawcall_count);
g_profiler->avg(prefix + "material swaps [#]", material_swaps);
}
void ClientMap::invalidateMapBlockMesh(MapBlockMesh *mesh)
{
// find all buffers for this block
MeshBufListMaps tmp;
tmp.addFromBlock(v3s16(), mesh, getSceneManager()->getVideoDriver());
std::vector<void*> to_delete;
void *maxp = 0;
for (auto &it : tmp.maps) {
for (auto &it2 : it) {
for (auto &it3 : it2.second) {
void *const p = it3.second; // explicit downcast
to_delete.push_back(p);
maxp = std::max(maxp, p);
}
}
}
if (to_delete.empty())
return;
// we know which buffers were used to produce a merged buffer
// so go through the cache and drop any entries that match
const auto &match_any = [&] (const std::string &key) {
assert(key.size() % sizeof(void*) == 0);
void *v;
for (size_t off = 0; off < key.size(); off += sizeof(void*)) {
// no alignment guarantee so *(void**)&key[off] is not allowed!
memcpy(&v, &key[off], sizeof(void*));
if (v > maxp) // early exit, since it's sorted
break;
if (CONTAINS(to_delete, v))
return true;
}
return false;
};
for (auto it = m_dynamic_buffers.begin(); it != m_dynamic_buffers.end(); ) {
if (match_any(it->first)) {
it->second.drop();
it = m_dynamic_buffers.erase(it);
} else {
it++;
}
}
}
static bool getVisibleBrightness(Map *map, const v3f &p0, v3f dir, float step,
float step_multiplier, float start_distance, float end_distance,
const NodeDefManager *ndef, u32 daylight_factor, float sunlight_min_d,
int *result, bool *sunlight_seen)
{
int brightness_sum = 0;
int brightness_count = 0;
float distance = start_distance;
dir.normalize();
v3f pf = p0;
pf += dir * distance;
int noncount = 0;
bool nonlight_seen = false;
bool allow_allowing_non_sunlight_propagates = false;
bool allow_non_sunlight_propagates = false;
// Check content nearly at camera position
{
v3s16 p = floatToInt(p0 /*+ dir * 3*BS*/, BS);
MapNode n = map->getNode(p);
if(ndef->getLightingFlags(n).has_light &&
!ndef->getLightingFlags(n).sunlight_propagates)
allow_allowing_non_sunlight_propagates = true;
}
// If would start at CONTENT_IGNORE, start closer
{
v3s16 p = floatToInt(pf, BS);
MapNode n = map->getNode(p);
if(n.getContent() == CONTENT_IGNORE){
float newd = 2*BS;
pf = p0 + dir * 2*newd;
distance = newd;
sunlight_min_d = 0;
}
}
for (int i=0; distance < end_distance; i++) {
pf += dir * step;
distance += step;
step *= step_multiplier;
v3s16 p = floatToInt(pf, BS);
MapNode n = map->getNode(p);
ContentLightingFlags f = ndef->getLightingFlags(n);
if (allow_allowing_non_sunlight_propagates && i == 0 &&
f.has_light && !f.sunlight_propagates) {
allow_non_sunlight_propagates = true;
}
if (!f.has_light || (!f.sunlight_propagates && !allow_non_sunlight_propagates)){
nonlight_seen = true;
noncount++;
if(noncount >= 4)
break;
continue;
}
if (distance >= sunlight_min_d && !*sunlight_seen && !nonlight_seen)
if (n.getLight(LIGHTBANK_DAY, f) == LIGHT_SUN)
*sunlight_seen = true;
noncount = 0;
brightness_sum += decode_light(n.getLightBlend(daylight_factor, f));
brightness_count++;
}
*result = 0;
if(brightness_count == 0)
return false;
*result = brightness_sum / brightness_count;
/*std::cerr<<"Sampled "<<brightness_count<<" points; result="
<<(*result)<<std::endl;*/
return true;
}
int ClientMap::getBackgroundBrightness(float max_d, u32 daylight_factor,
int oldvalue, bool *sunlight_seen_result)
{
ScopeProfiler sp(g_profiler, "CM::getBackgroundBrightness", SPT_AVG);
static v3f z_directions[50] = {
v3f(-100, 0, 0)
};
static f32 z_offsets[50] = {
-1000,
};
if (z_directions[0].X < -99) {
for (u32 i = 0; i < ARRLEN(z_directions); i++) {
// Assumes FOV of 72 and 16/9 aspect ratio
z_directions[i] = v3f(
0.02 * myrand_range(-100, 100),
1.0,
0.01 * myrand_range(-100, 100)
).normalize();
z_offsets[i] = 0.01 * myrand_range(0,100);
}
}
int sunlight_seen_count = 0;
float sunlight_min_d = max_d*0.8;
if(sunlight_min_d > 35*BS)
sunlight_min_d = 35*BS;
std::vector<int> values;
values.reserve(ARRLEN(z_directions));
for (u32 i = 0; i < ARRLEN(z_directions); i++) {
v3f z_dir = z_directions[i];
core::CMatrix4<f32> a;
a.buildRotateFromTo(v3f(0,1,0), z_dir);
v3f dir = a.rotateAndScaleVect(m_camera_direction);
int br = 0;
float step = BS*1.5;
if(max_d > 35*BS)
step = max_d / 35 * 1.5;
float off = step * z_offsets[i];
bool sunlight_seen_now = false;
bool ok = getVisibleBrightness(this, m_camera_position, dir,
step, 1.0, max_d*0.6+off, max_d, m_nodedef, daylight_factor,
sunlight_min_d,
&br, &sunlight_seen_now);
if(sunlight_seen_now)
sunlight_seen_count++;
if(!ok)
continue;
values.push_back(br);
// Don't try too much if being in the sun is clear
if(sunlight_seen_count >= 20)
break;
}
int brightness_sum = 0;
int brightness_count = 0;
std::sort(values.begin(), values.end());
u32 num_values_to_use = values.size();
if(num_values_to_use >= 10)
num_values_to_use -= num_values_to_use/2;
else if(num_values_to_use >= 7)
num_values_to_use -= num_values_to_use/3;
u32 first_value_i = (values.size() - num_values_to_use) / 2;
for (u32 i=first_value_i; i < first_value_i + num_values_to_use; i++) {
brightness_sum += values[i];
brightness_count++;
}
int ret = 0;
if(brightness_count == 0){
MapNode n = getNode(floatToInt(m_camera_position, BS));
ContentLightingFlags f = m_nodedef->getLightingFlags(n);
if(f.has_light){
ret = decode_light(n.getLightBlend(daylight_factor, f));
} else {
ret = oldvalue;
}
} else {
ret = brightness_sum / brightness_count;
}
*sunlight_seen_result = (sunlight_seen_count > 0);
return ret;
}
void ClientMap::renderPostFx(CameraMode cam_mode)
{
// Sadly ISceneManager has no "post effects" render pass, in that case we
// could just register for that and handle it in renderMap().
MapNode n = getNode(floatToInt(m_camera_position, BS));
const ContentFeatures& features = m_nodedef->get(n);
video::SColor post_color = features.post_effect_color;
if (features.post_effect_color_shaded) {
auto apply_light = [] (u32 color, u32 light) {
return core::clamp(core::round32(color * light / 255.0f), 0, 255);
};
post_color.setRed(apply_light(post_color.getRed(), m_camera_light_color.getRed()));
post_color.setGreen(apply_light(post_color.getGreen(), m_camera_light_color.getGreen()));
post_color.setBlue(apply_light(post_color.getBlue(), m_camera_light_color.getBlue()));
}
// If the camera is in a solid node, make everything black.
// (first person mode only)
if (features.solidness == 2 && cam_mode == CAMERA_MODE_FIRST &&
!m_control.allow_noclip) {
post_color = video::SColor(255, 0, 0, 0);
}
if (post_color.getAlpha() != 0) {
// Draw a full-screen rectangle
video::IVideoDriver* driver = SceneManager->getVideoDriver();
v2u32 ss = driver->getScreenSize();
core::rect<s32> rect(0,0, ss.X, ss.Y);
driver->draw2DRectangle(post_color, rect);
}
}
void ClientMap::PrintInfo(std::ostream &out)
{
out<<"ClientMap: ";
}
void ClientMap::renderMapShadows(video::IVideoDriver *driver,
const video::SMaterial &material, s32 pass, int frame, int total_frames)
{
bool is_transparent_pass = pass != scene::ESNRP_SOLID;
std::string prefix;
if (is_transparent_pass)
prefix = "renderMap(SHADOW TRANS): ";
else
prefix = "renderMap(SHADOW SOLID): ";
const auto mesh_grid = m_client->getMeshGrid();
// Gets world position from block map position
const auto get_block_wpos = [&] (v3s16 pos) -> v3f {
return intToFloat(mesh_grid.getMeshPos(pos) * MAP_BLOCKSIZE - m_camera_offset, BS);
};
MeshBufListMaps &grouped_buffers = tl_meshbuflistmaps;
DrawDescriptorList &draw_order = tl_drawdescriptorlist;
grouped_buffers.clear();
draw_order.clear();
std::size_t count = 0;
std::size_t meshes_per_frame = m_drawlist_shadow.size() / total_frames + 1;
std::size_t low_bound = is_transparent_pass ? 0 : meshes_per_frame * frame;
std::size_t high_bound = is_transparent_pass ? m_drawlist_shadow.size() : meshes_per_frame * (frame + 1);
// transparent pass should be rendered in one go
if (is_transparent_pass && frame != total_frames - 1) {
return;
}
for (const auto &i : m_drawlist_shadow) {
// only process specific part of the list & break early
++count;
if (count <= low_bound)
continue;
if (count > high_bound)
break;
v3s16 block_pos = i.first;
MapBlock *block = i.second;
// If the mesh of the block happened to get deleted, ignore it
if (!block->mesh)
continue;
/*
Get the meshbuffers of the block
*/
if (is_transparent_pass) {
// In transparent pass, the mesh will give us
// the partial buffers in the correct order
for (auto &buffer : block->mesh->getTransparentBuffers())
draw_order.emplace_back(get_block_wpos(block_pos), &buffer);
} else {
// Otherwise, group them
grouped_buffers.addFromBlock(block_pos, block->mesh, driver);
}
}
for (auto &map : grouped_buffers.maps) {
for (auto &list : map) {
transformBuffersToDrawOrder(
list.second, draw_order, get_block_wpos, m_dynamic_buffers);
}
}
TimeTaker draw("");
core::matrix4 m; // Model matrix
u32 drawcall_count = 0;
u32 vertex_count = 0;
u32 material_swaps = 0;
// Render all mesh buffers in order
drawcall_count += draw_order.size();
bool translucent_foliage = g_settings->getBool("enable_translucent_foliage");
video::E_MATERIAL_TYPE leaves_material = video::EMT_SOLID;
// For translucent leaves, we want to use backface culling instead of frontface.
if (translucent_foliage) {
// this is the material leaves would use, compare to nodedef.cpp
auto* shdsrc = m_client->getShaderSource();
const u32 leaves_shader = shdsrc->getShader("nodes_shader", TILE_MATERIAL_WAVING_LEAVES, NDT_ALLFACES);
leaves_material = shdsrc->getShaderInfo(leaves_shader).material;
}
for (auto &descriptor : draw_order) {
if (!descriptor.m_reuse_material) {
// override some material properties
video::SMaterial local_material = descriptor.getMaterial();
// do not override culling if the original material renders both back
// and front faces in solid mode (e.g. plantlike)
// Transparent plants would still render shadows only from one side,
// but this conflicts with water which occurs much more frequently
if (is_transparent_pass || local_material.BackfaceCulling || local_material.FrontfaceCulling) {
local_material.BackfaceCulling = material.BackfaceCulling;
local_material.FrontfaceCulling = material.FrontfaceCulling;
}
if (local_material.MaterialType == leaves_material && translucent_foliage) {
local_material.BackfaceCulling = true;
local_material.FrontfaceCulling = false;
}
local_material.MaterialType = material.MaterialType;
local_material.BlendOperation = material.BlendOperation;
driver->setMaterial(local_material);
++material_swaps;
}
m.setTranslation(descriptor.m_pos);
driver->setTransform(video::ETS_WORLD, m);
vertex_count += descriptor.draw(driver);
}
// restore the driver material state
video::SMaterial clean;
clean.BlendOperation = video::EBO_ADD;
driver->setMaterial(clean); // reset material to defaults
// FIXME: why is this here?
driver->draw3DLine(v3f(), v3f(), video::SColor(0));
g_profiler->avg(prefix + "draw meshes [ms]", draw.stop(true));
g_profiler->avg(prefix + "vertices drawn [#]", vertex_count);
g_profiler->avg(prefix + "drawcalls [#]", drawcall_count);
g_profiler->avg(prefix + "material swaps [#]", material_swaps);
}
/*
Custom update draw list for the pov of shadow light.
*/
void ClientMap::updateDrawListShadow(v3f shadow_light_pos, v3f shadow_light_dir, float radius, float length)
{
ScopeProfiler sp(g_profiler, "CM::updateDrawListShadow()", SPT_AVG);
for (auto &i : m_drawlist_shadow) {
MapBlock *block = i.second;
block->refDrop();
}
m_drawlist_shadow.clear();
// Number of blocks currently loaded by the client
u32 blocks_loaded = 0;
// Number of blocks with mesh in rendering range
u32 blocks_in_range_with_mesh = 0;
for (auto &sector_it : m_sectors) {
const MapSector *sector = sector_it.second;
if (!sector)
continue;
blocks_loaded += sector->size();
/*
Loop through blocks in sector
*/
for (const auto &entry : sector->getBlocks()) {
MapBlock *block = entry.second.get();
MapBlockMesh *mesh = block->mesh;
if (!mesh) {
// Ignore if mesh doesn't exist
continue;
}
v3f block_pos = intToFloat(block->getPosRelative(), BS) + mesh->getBoundingSphereCenter();
v3f projection = shadow_light_pos + shadow_light_dir * shadow_light_dir.dotProduct(block_pos - shadow_light_pos);
if (projection.getDistanceFrom(block_pos) > (radius + mesh->getBoundingRadius()))
continue;
blocks_in_range_with_mesh++;
// This block is in range. Reset usage timer.
block->resetUsageTimer();
// Add to set
if (m_drawlist_shadow.emplace(block->getPos(), block).second) {
block->refGrab();
}
}
}
g_profiler->avg("SHADOW MapBlock meshes in range [#]", blocks_in_range_with_mesh);
g_profiler->avg("SHADOW MapBlocks drawn [#]", m_drawlist_shadow.size());
g_profiler->avg("SHADOW MapBlocks loaded [#]", blocks_loaded);
}
void ClientMap::reportMetrics(u64 save_time_us, u32 saved_blocks, u32 all_blocks)
{
g_profiler->avg("CM::reportMetrics loaded blocks [#]", all_blocks);
}
void ClientMap::updateTransparentMeshBuffers()
{
ScopeProfiler sp(g_profiler, "CM::updateTransparentMeshBuffers", SPT_AVG);
u32 sorted_blocks = 0;
u32 unsorted_blocks = 0;
bool transparency_sorting_enabled = m_cache_transparency_sorting_distance > 0;
f32 sorting_distance = m_cache_transparency_sorting_distance * BS;
// Update the order of transparent mesh buffers in each mesh
for (auto it = m_drawlist.begin(); it != m_drawlist.end(); it++) {
MapBlock *block = it->second;
MapBlockMesh *blockmesh = block->mesh;
if (!blockmesh)
continue;
if (m_needs_update_transparent_meshes ||
blockmesh->getTransparentBuffers().size() == 0) {
bool do_sort_block = transparency_sorting_enabled;
if (do_sort_block) {
v3f mesh_sphere_center = intToFloat(block->getPosRelative(), BS)
+ blockmesh->getBoundingSphereCenter();
f32 mesh_sphere_radius = blockmesh->getBoundingRadius();
f32 distance_sq = m_camera_position.getDistanceFromSQ(mesh_sphere_center);
if (distance_sq > std::pow(sorting_distance + mesh_sphere_radius, 2.0f))
do_sort_block = false;
}
if (do_sort_block) {
blockmesh->updateTransparentBuffers(m_camera_position, block->getPos(),
m_cache_transparency_sorting_group_by_buffers);
++sorted_blocks;
} else {
blockmesh->consolidateTransparentBuffers();
++unsorted_blocks;
}
}
}
g_profiler->avg("CM::Transparent Buffers - Sorted", sorted_blocks);
g_profiler->avg("CM::Transparent Buffers - Unsorted", unsorted_blocks);
m_needs_update_transparent_meshes = false;
}
video::SMaterial &DrawDescriptor::getMaterial()
{
return (m_use_partial_buffer ? m_partial_buffer->getBuffer() : m_buffer)->getMaterial();
}
u32 DrawDescriptor::draw(video::IVideoDriver* driver)
{
if (m_use_partial_buffer) {
m_partial_buffer->draw(driver);
return m_partial_buffer->getBuffer()->getVertexCount();
} else {
driver->drawMeshBuffer(m_buffer);
return m_buffer->getVertexCount();
}
}
bool ClientMap::isMeshOccluded(MapBlock *mesh_block, u16 mesh_size, v3s16 cam_pos_nodes)
{
if (mesh_size == 1)
return isBlockOccluded(mesh_block, cam_pos_nodes);
v3s16 min_edge = mesh_block->getPosRelative();
v3s16 max_edge = min_edge + mesh_size * MAP_BLOCKSIZE -1;
bool check_axis[3] = { false, false, false };
u16 closest_side[3] = { 0, 0, 0 };
for (int axis = 0; axis < 3; axis++) {
if (cam_pos_nodes[axis] < min_edge[axis])
check_axis[axis] = true;
else if (cam_pos_nodes[axis] > max_edge[axis]) {
check_axis[axis] = true;
closest_side[axis] = mesh_size - 1;
}
}
std::vector<bool> processed_blocks(mesh_size * mesh_size * mesh_size);
// scan the side
for (u16 i = 0; i < mesh_size; i++)
for (u16 j = 0; j < mesh_size; j++) {
v3s16 offsets[3] = {
v3s16(closest_side[0], i, j),
v3s16(i, closest_side[1], j),
v3s16(i, j, closest_side[2])
};
for (int axis = 0; axis < 3; axis++) {
v3s16 offset = offsets[axis];
int block_index = offset.X + offset.Y * mesh_size + offset.Z * mesh_size * mesh_size;
if (check_axis[axis] && !processed_blocks[block_index]) {
processed_blocks[block_index] = true;
v3s16 block_pos = mesh_block->getPos() + offset;
MapBlock *block;
if (mesh_block->getPos() == block_pos)
block = mesh_block;
else
block = getBlockNoCreateNoEx(block_pos);
if (block && !isBlockOccluded(block, cam_pos_nodes))
return false;
}
}
}
return true;
}