// Luanti // SPDX-License-Identifier: LGPL-2.1-or-later // Copyright (C) 2010-2013 celeron55, Perttu Ahola #pragma once #include "basic_macros.h" #include "constants.h" #include "irrlichttypes.h" #include "irr_v2d.h" #include "irr_v3d.h" #include "irr_aabb3d.h" #include "SColor.h" #include #include #include // Like std::clamp but allows mismatched types template [[nodiscard]] inline constexpr T rangelim(const T &d, const T2 &min, const T3 &max) { if (d < (T)min) return (T)min; if (d > (T)max) return (T)max; return d; } // Maximum radius of a block. The magic number is // sqrt(3.0) / 2.0 in literal form. static constexpr const f32 BLOCK_MAX_RADIUS = 0.866025403784f * MAP_BLOCKSIZE * BS; inline s16 getContainerPos(s16 p, s16 d) { return (p >= 0 ? p : p - d + 1) / d; } inline v2s16 getContainerPos(v2s16 p, s16 d) { return v2s16( getContainerPos(p.X, d), getContainerPos(p.Y, d) ); } inline v3s16 getContainerPos(v3s16 p, s16 d) { return v3s16( getContainerPos(p.X, d), getContainerPos(p.Y, d), getContainerPos(p.Z, d) ); } inline v2s16 getContainerPos(v2s16 p, v2s16 d) { return v2s16( getContainerPos(p.X, d.X), getContainerPos(p.Y, d.Y) ); } inline v3s16 getContainerPos(v3s16 p, v3s16 d) { return v3s16( getContainerPos(p.X, d.X), getContainerPos(p.Y, d.Y), getContainerPos(p.Z, d.Z) ); } inline void getContainerPosWithOffset(s16 p, s16 d, s16 &container, s16 &offset) { container = (p >= 0 ? p : p - d + 1) / d; offset = p & (d - 1); } inline void getContainerPosWithOffset(const v2s16 &p, s16 d, v2s16 &container, v2s16 &offset) { getContainerPosWithOffset(p.X, d, container.X, offset.X); getContainerPosWithOffset(p.Y, d, container.Y, offset.Y); } inline void getContainerPosWithOffset(const v3s16 &p, s16 d, v3s16 &container, v3s16 &offset) { getContainerPosWithOffset(p.X, d, container.X, offset.X); getContainerPosWithOffset(p.Y, d, container.Y, offset.Y); getContainerPosWithOffset(p.Z, d, container.Z, offset.Z); } inline bool isInArea(v3s16 p, s16 d) { return ( p.X >= 0 && p.X < d && p.Y >= 0 && p.Y < d && p.Z >= 0 && p.Z < d ); } inline bool isInArea(v2s16 p, s16 d) { return ( p.X >= 0 && p.X < d && p.Y >= 0 && p.Y < d ); } inline bool isInArea(v3s16 p, v3s16 d) { return ( p.X >= 0 && p.X < d.X && p.Y >= 0 && p.Y < d.Y && p.Z >= 0 && p.Z < d.Z ); } template inline void sortBoxVerticies(core::vector3d &p1, core::vector3d &p2) { if (p1.X > p2.X) std::swap(p1.X, p2.X); if (p1.Y > p2.Y) std::swap(p1.Y, p2.Y); if (p1.Z > p2.Z) std::swap(p1.Z, p2.Z); } template inline constexpr core::vector3d componentwise_min(const core::vector3d &a, const core::vector3d &b) { return {std::min(a.X, b.X), std::min(a.Y, b.Y), std::min(a.Z, b.Z)}; } template inline constexpr core::vector3d componentwise_max(const core::vector3d &a, const core::vector3d &b) { return {std::max(a.X, b.X), std::max(a.Y, b.Y), std::max(a.Z, b.Z)}; } /// @brief Describes a grid with given step, oirginating at (0,0,0) struct MeshGrid { u16 cell_size; u32 getCellVolume() const { return cell_size * cell_size * cell_size; } /// @brief returns coordinate of mesh cell given coordinate of a map block s16 getCellPos(s16 p) const { return (p - (p < 0) * (cell_size - 1)) / cell_size; } /// @brief returns position of mesh cell in the grid given position of a map block v3s16 getCellPos(v3s16 block_pos) const { return v3s16(getCellPos(block_pos.X), getCellPos(block_pos.Y), getCellPos(block_pos.Z)); } /// @brief returns closest step of the grid smaller than p s16 getMeshPos(s16 p) const { return getCellPos(p) * cell_size; } /// @brief Returns coordinates of the origin of the grid cell containing p v3s16 getMeshPos(v3s16 p) const { return v3s16(getMeshPos(p.X), getMeshPos(p.Y), getMeshPos(p.Z)); } /// @brief Returns true if p is an origin of a cell in the grid. bool isMeshPos(v3s16 &p) const { return p.X % cell_size == 0 && p.Y % cell_size == 0 && p.Z % cell_size == 0; } /// @brief Returns index of the given offset in a grid cell /// All offset coordinates must be smaller than the size of the cell u16 getOffsetIndex(v3s16 offset) const { return (offset.Z * cell_size + offset.Y) * cell_size + offset.X; } }; /** Returns \p f wrapped to the range [-360, 360] * * See test.cpp for example cases. * * \note This is also used in cases where degrees wrapped to the range [0, 360] * is innapropriate (e.g. pitch needs negative values) */ [[nodiscard]] inline float modulo360f(float f) { return fmodf(f, 360.0f); } /** Returns \p f wrapped to the range [0, 360] */ [[nodiscard]] inline float wrapDegrees_0_360(float f) { float value = modulo360f(f); return value < 0 ? value + 360 : value; } /** Returns \p v3f wrapped to the range [0, 360] */ [[nodiscard]] inline v3f wrapDegrees_0_360_v3f(v3f v) { v3f value_v3f; value_v3f.X = modulo360f(v.X); value_v3f.Y = modulo360f(v.Y); value_v3f.Z = modulo360f(v.Z); // Now that values are wrapped, use to get values for certain ranges value_v3f.X = value_v3f.X < 0 ? value_v3f.X + 360 : value_v3f.X; value_v3f.Y = value_v3f.Y < 0 ? value_v3f.Y + 360 : value_v3f.Y; value_v3f.Z = value_v3f.Z < 0 ? value_v3f.Z + 360 : value_v3f.Z; return value_v3f; } /** Returns \p f wrapped to the range [-180, 180] */ [[nodiscard]] inline float wrapDegrees_180(float f) { float value = modulo360f(f + 180); if (value < 0) value += 360; return value - 180; } /* Pseudo-random (VC++ rand() sucks) */ #define MYRAND_RANGE 0xffffffff u32 myrand(); void mysrand(unsigned int seed); void myrand_bytes(void *out, size_t len); int myrand_range(int min, int max); float myrand_range(float min, float max); float myrand_float(); // Implements a C++11 UniformRandomBitGenerator using the above functions struct MyRandGenerator { typedef u32 result_type; static constexpr result_type min() { return 0; } static constexpr result_type max() { return MYRAND_RANGE; } inline result_type operator()() { return myrand(); } }; /* Miscellaneous functions */ inline u32 get_bits(u32 x, u32 pos, u32 len) { u32 mask = (1 << len) - 1; return (x >> pos) & mask; } inline void set_bits(u32 *x, u32 pos, u32 len, u32 val) { u32 mask = (1 << len) - 1; *x &= ~(mask << pos); *x |= (val & mask) << pos; } inline u32 calc_parity(u32 v) { v ^= v >> 16; v ^= v >> 8; v ^= v >> 4; v &= 0xf; return (0x6996 >> v) & 1; } /** * Calculate MurmurHash64A hash for an arbitrary block of data. * @param key data to hash (does not need to be aligned) * @param len length in bytes * @param seed initial seed value * @return hash value */ [[nodiscard]] u64 murmur_hash_64_ua(const void *key, size_t len, unsigned int seed); /** * @param blockpos_b position of block in block coordinates * @param camera_pos position of camera in nodes * @param camera_dir an unit vector pointing to camera direction * @param range viewing range * @param distance_ptr return location for distance from the camera */ bool isBlockInSight(v3s16 blockpos_b, v3f camera_pos, v3f camera_dir, f32 camera_fov, f32 range, f32 *distance_ptr=nullptr); s16 adjustDist(s16 dist, float zoom_fov); /* Returns nearest 32-bit integer for given floating point number. and in VC++ don't provide round(). */ [[nodiscard]] inline s32 myround(f32 f) { return (s32)(f < 0.f ? (f - 0.5f) : (f + 0.5f)); } template [[nodiscard]] inline constexpr T sqr(T f) { return f * f; } /* Returns integer position of node in given floating point position */ [[nodiscard]] inline v3s16 floatToInt(v3f p, f32 d) { return v3s16( (p.X + (p.X > 0 ? d / 2 : -d / 2)) / d, (p.Y + (p.Y > 0 ? d / 2 : -d / 2)) / d, (p.Z + (p.Z > 0 ? d / 2 : -d / 2)) / d); } /* Returns integer position of node in given double precision position */ [[nodiscard]] inline v3s16 doubleToInt(v3d p, double d) { return v3s16( (p.X + (p.X > 0 ? d / 2 : -d / 2)) / d, (p.Y + (p.Y > 0 ? d / 2 : -d / 2)) / d, (p.Z + (p.Z > 0 ? d / 2 : -d / 2)) / d); } /* Returns floating point position of node in given integer position */ [[nodiscard]] inline v3f intToFloat(v3s16 p, f32 d) { return v3f::from(p) * d; } // Returns box of a node as in-world box. Usually d=BS [[nodiscard]] inline aabb3f getNodeBox(v3s16 p, float d) { return aabb3f( v3f::from(p) * d - 0.5f * d, v3f::from(p) * d + 0.5f * d ); } class IntervalLimiter { public: IntervalLimiter() = default; /** @param dtime time from last call to this method @param wanted_interval interval wanted @return true if action should be done */ [[nodiscard]] bool step(float dtime, float wanted_interval) { m_accumulator += dtime; if (m_accumulator < wanted_interval) return false; m_accumulator -= wanted_interval; return true; } private: float m_accumulator = 0.0f; }; /* Splits a list into "pages". For example, the list [1,2,3,4,5] split into two pages would be [1,2,3],[4,5]. This function computes the minimum and maximum indices of a single page. length: Length of the list that should be split page: Page number, 1 <= page <= pagecount pagecount: The number of pages, >= 1 minindex: Receives the minimum index (inclusive). maxindex: Receives the maximum index (exclusive). Ensures 0 <= minindex <= maxindex <= length. */ inline void paging(u32 length, u32 page, u32 pagecount, u32 &minindex, u32 &maxindex) { if (length < 1 || pagecount < 1 || page < 1 || page > pagecount) { // Special cases or invalid parameters minindex = maxindex = 0; } else if(pagecount <= length) { // Less pages than entries in the list: // Each page contains at least one entry minindex = (length * (page-1) + (pagecount-1)) / pagecount; maxindex = (length * page + (pagecount-1)) / pagecount; } else { // More pages than entries in the list: // Make sure the empty pages are at the end if (page < length) { minindex = page-1; maxindex = page; } else { minindex = 0; maxindex = 0; } } } constexpr inline bool is_power_of_two(u32 n) { return n != 0 && (n & (n - 1)) == 0; } // Compute next-higher power of 2 efficiently, e.g. for power-of-2 texture sizes. // Public Domain: https://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2 constexpr inline u32 npot2(u32 orig) { orig--; orig |= orig >> 1; orig |= orig >> 2; orig |= orig >> 4; orig |= orig >> 8; orig |= orig >> 16; return orig + 1; } // Distance between two values in a wrapped (circular) system template inline unsigned wrappedDifference(T a, T b, const T maximum) { if (a > b) std::swap(a, b); // now b >= a unsigned s = b - a, l = static_cast(maximum - b) + a + 1; return std::min(s, l); } // Gradual steps towards the target value in a wrapped (circular) system // using the shorter of both ways template inline void wrappedApproachShortest(T ¤t, const T target, const T stepsize, const T maximum) { T delta = target - current; if (delta < 0) delta += maximum; if (delta > stepsize && maximum - delta > stepsize) { current += (delta < maximum / 2) ? stepsize : -stepsize; if (current >= maximum) current -= maximum; } else { current = target; } } void setPitchYawRollRad(core::matrix4 &m, v3f rot); inline void setPitchYawRoll(core::matrix4 &m, v3f rot) { setPitchYawRollRad(m, rot * core::DEGTORAD); } v3f getPitchYawRollRad(const core::matrix4 &m); inline v3f getPitchYawRoll(const core::matrix4 &m) { return getPitchYawRollRad(m) * core::RADTODEG; } // Muliply the RGB value of a color linearly, and clamp to black/white inline video::SColor multiplyColorValue(const video::SColor &color, float mod) { return video::SColor(color.getAlpha(), core::clamp(color.getRed() * mod, 0, 255), core::clamp(color.getGreen() * mod, 0, 255), core::clamp(color.getBlue() * mod, 0, 255)); } template constexpr inline T numericAbsolute(T v) { return v < 0 ? T(-v) : v; } template constexpr inline T numericSign(T v) { return T(v < 0 ? -1 : (v == 0 ? 0 : 1)); } template inline constexpr core::vector3d vecAbsolute(const core::vector3d &v) { return { numericAbsolute(v.X), numericAbsolute(v.Y), numericAbsolute(v.Z) }; } template inline constexpr core::vector3d vecSign(const core::vector3d &v) { return { numericSign(v.X), numericSign(v.Y), numericSign(v.Z) }; }