1
0
Fork 0
mirror of https://github.com/luanti-org/luanti.git synced 2025-06-27 16:36:03 +00:00

Update volumetrics

This commit is contained in:
Gefüllte Taubenbrust 2024-08-18 15:13:26 +02:00
parent 22ba7449f2
commit e6752008e0
17 changed files with 420 additions and 181 deletions

View file

@ -610,14 +610,15 @@ enable_auto_exposure (Enable Automatic Exposure) bool false
# Requires: shaders, enable_post_processing, enable_auto_exposure # Requires: shaders, enable_post_processing, enable_auto_exposure
exposure_compensation (Exposure compensation) float 0.0 -1.0 1.0 exposure_compensation (Exposure compensation) float 0.0 -1.0 1.0
# Set the gamma value. # Set the post processing gamma value.
# Higher values give lower contrast and vice versa. # Higher values give lower contrast and vice versa.
# Range: from 1.0 to 5.0 # Range: from 1.0 to 5.0
# Default: 1.6
# #
# Requires: shaders, enable_post_processing, tone_mapping # Requires: shaders, enable_post_processing, tone_mapping
gamma (Gamma) float 1.6 1.0 5.0 gamma (Gamma) float 1.6 1.0 5.0
# Apply color grading to make brighter colors warmer and darker colors cooler. # Apply ASL CDL color grading to make brighter colors warmer and darker colors cooler.
# #
# Requires: shaders, enable_post_processing # Requires: shaders, enable_post_processing
enable_color_grading (Color grading) bool false enable_color_grading (Color grading) bool false
@ -674,10 +675,28 @@ bloom_strength_factor (Bloom Strength Factor) float 1.0 0.1 10.0
# Requires: shaders, enable_post_processing, enable_bloom # Requires: shaders, enable_post_processing, enable_bloom
bloom_radius (Bloom Radius) float 1 0.1 8 bloom_radius (Bloom Radius) float 1 0.1 8
[**Volumetric Effects]
# Set to true to enable volumetric lighting effect (a.k.a. "Godrays"). # Set to true to enable volumetric lighting effect (a.k.a. "Godrays").
# #
# Requires: shaders, enable_post_processing, enable_bloom # Requires: shaders, enable_post_processing, enable_bloom
enable_volumetric_lighting (Volumetric lighting) bool false enable_volumetric_lighting (Volumetric Lighting) bool false
# Set to true to render clouds as scatter volumes.
#
# Requires: shaders, enable_post_processing, enable_clouds
enable_volumetric_clouds (Volumetric Clouds) bool false
# Higher values reduce visual quality and may introduce artifacts, but improve performance of volumetric cloud/aurora effects.
# Range: from 1 to 4, default: 2
#
# Requires: shaders, enable_post_processing
volumetrics_undersampling (Volumetric Undersampling) int 2 1 4
# Set to true to render volumetric auroras ("Northern Lights").
#
# Requires: shaders, enable_post_processing
enable_volumetric_auroras (Volumetric Auroras) bool false
[**Other Effects] [**Other Effects]

View file

@ -1,24 +1,49 @@
#define cloudsTexture texture0 #define cloudsTexture texture0
#define sceneTexture texture1 #define sceneTexture texture1
#define depthmap texture2
uniform sampler2D cloudsTexture; uniform sampler2D cloudsTexture;
uniform sampler2D sceneTexture; uniform sampler2D sceneTexture;
uniform sampler2D depthmap;
uniform vec2 texelSize0; uniform vec2 texelSize0;
uniform vec3 dayLight; uniform vec3 dayLight;
uniform vec3 cloudColor;
varying vec2 screenspaceCoordinate; varying vec2 screenspaceCoordinate;
varying vec3 relativePosition;
varying vec3 viewDirection;
varying vec3 sunTint;
varying float auroraFactor;
uniform vec3 cameraOffset;
uniform vec3 cameraPosition;
uniform float cameraNear;
uniform float cameraFar;
uniform float cloudHeight;
uniform float cloudThickness;
float getDepth(vec2 screenspacePosition) {
float depth = texture2D(depthmap, screenspacePosition * 0.5 + 0.5).r;
return cameraNear * cameraFar / (cameraFar + depth * (cameraNear - cameraFar));
}
vec4 sampleClouds(vec2 uv) { vec4 sampleClouds(vec2 uv) {
vec4 cloudsKey = texture2D(cloudsTexture, uv); vec4 cloudsKey = texture2D(cloudsTexture, uv);
const vec3 darkColor = vec3(0.05, 0.1, 0.2); //const vec3 darkColor = vec3(0.05, 0.1, 0.2);
vec3 darkColor = vec3(0.2, 0.4, 0.8) * dayLight;
const vec3 auroraDark = vec3(0., 0.5, 0.5); const vec3 auroraDark = vec3(0., 0.5, 0.5);
const vec3 auroraBright = vec3(0., 0.5, .0); const vec3 auroraBright = vec3(0., 0.5, .0);
//const vec3 auroraDark = vec3(0.);
//const vec3 auroraBright = vec3(0.);
return vec4( return vec4(
mix(auroraDark, auroraBright, cloudsKey.b) * cloudsKey.b * max(0., 1. - cloudsKey.r) + mix(auroraDark, auroraBright, cloudsKey.b) * cloudsKey.b * auroraFactor +
cloudsKey.r * (darkColor * max(0., 1. - cloudsKey.g) + dayLight * cloudsKey.g), cloudsKey.r * cloudColor * (darkColor * max(0., 1. - cloudsKey.g) + dayLight * sunTint * cloudsKey.g),
cloudsKey.r); cloudsKey.r);
} }
@ -37,8 +62,22 @@ vec4 getClouds(vec2 uv) {
void main(void) void main(void)
{ {
vec4 cloudsColor = getClouds(screenspaceCoordinate * 0.5 + 0.5); vec3 viewVec = normalize(relativePosition);
vec3 position = cameraOffset + cameraPosition;
float depth = getDepth(screenspaceCoordinate) / normalize(viewDirection).z;
float bottomPlaneIntersect = max((cloudHeight - cameraPosition.y) / viewVec.y, 0.);
float topPlaneIntersect = max((cloudHeight + cloudThickness - cameraPosition.y) / viewVec.y, 0.);
float minPlane = min(bottomPlaneIntersect, topPlaneIntersect);
vec4 sceneColor = texture2D(sceneTexture, screenspaceCoordinate * 0.5 + 0.5); vec4 sceneColor = texture2D(sceneTexture, screenspaceCoordinate * 0.5 + 0.5);
gl_FragColor = vec4(sceneColor.rgb * (1. - cloudsColor.a) + cloudsColor.rgb, 1.); if (depth > minPlane) {
vec4 finalColor = getClouds(screenspaceCoordinate * 0.5 + 0.5);
gl_FragColor = vec4(sceneColor.rgb * (1. - finalColor.a) + finalColor.rgb, 1.);
} else {
gl_FragColor = sceneColor;
}
} }

View file

@ -1,7 +1,48 @@
uniform mat4 mCameraProjInv;
uniform mat4 mCameraView;
uniform vec3 v_LightDirection;
uniform float f_timeofday;
varying vec3 relativePosition;
varying vec3 viewDirection;
varying vec2 screenspaceCoordinate; varying vec2 screenspaceCoordinate;
varying vec3 sunTint;
varying float auroraFactor;
vec3 getDirectLightScatteringAtGround(vec3 v_LightDirection)
{
// Based on talk at 2002 Game Developers Conference by Naty Hoffman and Arcot J. Preetham
const float beta_r0 = 1e-5; // Rayleigh scattering beta
// These factors are calculated based on expected value of scattering factor of 1e-5
// for Nitrogen at 532nm (green), 2e25 molecules/m3 in atmosphere
const vec3 beta_r0_l = vec3(3.3362176e-01, 8.75378289198826e-01, 1.95342379700656) * beta_r0; // wavelength-dependent scattering
const float atmosphere_height = 15000.; // height of the atmosphere in meters
// sun/moon light at the ground level, after going through the atmosphere
return exp(-beta_r0_l * atmosphere_height / (1e-5 - dot(v_LightDirection, vec3(0., 1., 0.))));
}
// custom smoothstep implementation because it's not defined in glsl1.2
// https://docs.gl/sl4/smoothstep
float mtsmoothstep(in float edge0, in float edge1, in float x)
{
float t = clamp((x - edge0) / (edge1 - edge0), 0.0, 1.0);
return t * t * (3.0 - 2.0 * t);
}
void main(void) void main(void)
{ {
vec4 p = mCameraProjInv * inVertexPosition;
viewDirection = p.xyz / p.w;
relativePosition = (p.xyz / p.w) * mat3(mCameraView);
screenspaceCoordinate = inVertexPosition.xy; screenspaceCoordinate = inVertexPosition.xy;
auroraFactor = 1. - mtsmoothstep(0.13, 0.15, f_timeofday) * mtsmoothstep(0.87, 0.85, f_timeofday);
float tintFactor = mtsmoothstep(0.21, 0.24, f_timeofday) * mtsmoothstep(0.793, 0.753, f_timeofday);
sunTint = mix(vec3(1.0), getDirectLightScatteringAtGround(v_LightDirection), tintFactor);
gl_Position = inVertexPosition; gl_Position = inVertexPosition;
} }

View file

@ -1,17 +0,0 @@
uniform float cloudDensity;
// Pseudorandom number generator
float rand(vec2 n) {
return fract(sin(dot(n, vec2(12.9898, 4.1414))) * 43758.5453);
}
// More random pseudorandom number generator;
float noise(vec2 p){
vec2 p2 = p + vec2(rand(p), rand(p.yx));
return rand(p2);
}
void main(void)
{
gl_FragColor = vec4(vec3(step(noise(floor(gl_FragCoord.xy * 0.25)), cloudDensity)), 1.);
}

View file

@ -1,4 +0,0 @@
void main(void)
{
gl_Position = inVertexPosition;
}

View file

@ -1,15 +0,0 @@
// Pseudorandom number generator
float rand(vec2 n) {
return fract(sin(dot(n, vec2(12.9898, 4.1414))) * 43758.5453);
}
// More random pseudorandom number generator;
float noise(vec2 p){
vec2 p2 = p + vec2(rand(p), rand(p.yx));
return rand(p2);
}
void main(void)
{
gl_FragColor = vec4(vec3(noise(gl_FragCoord.xy)), 1.);
}

View file

@ -1,4 +0,0 @@
void main(void)
{
gl_Position = inVertexPosition;
}

View file

@ -2,10 +2,13 @@
#define noiseTexture texture1 #define noiseTexture texture1
#define noiseTextureCoarse texture2 #define noiseTextureCoarse texture2
#define PROBING_ITERATIONS 30
#define ITERATIONS 50 #define ITERATIONS 50
#define LIGHT_ITERATIONS 10 #define LIGHT_ITERATIONS 3
#define LIGHT_DISTANCE 100. #define AURORA_ITERATIONS 80
#define AURORA_ITERATIONS 100
// See clouds.cpp
#define CLOUD_SIZE 640.0
uniform sampler2D depthmap; uniform sampler2D depthmap;
uniform sampler2D noiseTexture; uniform sampler2D noiseTexture;
@ -19,17 +22,17 @@ uniform float cloudDensity;
varying vec3 relativePosition; varying vec3 relativePosition;
varying vec3 viewDirection; varying vec3 viewDirection;
uniform vec3 eyePosition;
uniform vec3 cameraOffset; uniform vec3 cameraOffset;
uniform vec3 cameraPosition; uniform vec3 cameraPosition;
uniform mat4 mCameraView;
uniform mat4 mCameraProjInv;
uniform float cameraNear; uniform float cameraNear;
uniform float cameraFar; uniform float cameraFar;
uniform vec2 cloudOffset;
uniform float cloudRadius;
varying vec2 screenspaceCoordinate; varying vec2 screenspaceCoordinate;
varying float sunStrength;
uniform float fogDistance; uniform float fogDistance;
uniform float fogShadingParameter; uniform float fogShadingParameter;
@ -41,7 +44,8 @@ uniform float animationTimer;
// Derived From http://alex.vlachos.com/graphics/Alex_Vlachos_Advanced_VR_Rendering_GDC2015.pdf // Derived From http://alex.vlachos.com/graphics/Alex_Vlachos_Advanced_VR_Rendering_GDC2015.pdf
// and https://www.shadertoy.com/view/MslGR8 (5th one starting from the bottom) // and https://www.shadertoy.com/view/MslGR8 (5th one starting from the bottom)
// NOTE: `frag_coord` is in pixels (i.e. not normalized UV). // NOTE: `frag_coord` is in pixels (i.e. not normalized UV).
float screenSpaceDither(highp vec2 frag_coord) { float screenSpaceDither(highp vec2 frag_coord)
{
// Iestyn's RGB dither (7 asm instructions) from Portal 2 X360, slightly modified for VR. // Iestyn's RGB dither (7 asm instructions) from Portal 2 X360, slightly modified for VR.
highp float dither = dot(vec2(171.0, 231.0), frag_coord); highp float dither = dot(vec2(171.0, 231.0), frag_coord);
dither = fract(dither / 103.0); dither = fract(dither / 103.0);
@ -57,38 +61,47 @@ float mtsmoothstep(in float edge0, in float edge1, in float x)
return t * t * (3.0 - 2.0 * t); return t * t * (3.0 - 2.0 * t);
} }
float getDepth(vec2 screenspacePosition) { float toLinearDepth(float depth)
float depth = texture2D(depthmap, screenspacePosition * 0.5 + 0.5).r; {
return cameraNear * cameraFar / (cameraFar + depth * (cameraNear - cameraFar)); return cameraNear * cameraFar / (cameraFar + depth * (cameraNear - cameraFar));
} }
float getRawDepth(vec2 screenspacePosition) { float getDepth(vec2 screenspacePosition)
{
return texture2D(depthmap, screenspacePosition * 0.5 + 0.5).r; return texture2D(depthmap, screenspacePosition * 0.5 + 0.5).r;
} }
float noise(vec3 p){ float noise(vec3 p)
//p.y *= 1.; {
float y = floor(p.y); float y = floor(p.y);
float f1 = texture2D(noiseTexture, p.xz / 256. + y * 0.2).r; float f1 = texture2D(noiseTexture, p.xz / 256. + y * 0.2).r;
float f2 = texture2D(noiseTexture, p.xz / 256. + y * 0.2 + 0.2).r; float f2 = texture2D(noiseTexture, p.xz / 256. + y * 0.2 + 0.2).r;
return mix(f1, f2, fract(p.y)); return mix(f1, f2, fract(p.y));
} }
float fnoise(vec3 p) { float fnoise(vec3 p)
{
return noise(p * 4.) * 0.5 + noise(p * 8.) * 0.25; return noise(p * 4.) * 0.5 + noise(p * 8.) * 0.25;
} }
float fnoise3(vec3 p) { float fnoise3(vec3 p)
{
return noise(p * 4.) * 0.5 + noise(p * 8.) * 0.25 + noise(p * 16.) * 0.125; return noise(p * 4.) * 0.5 + noise(p * 8.) * 0.25 + noise(p * 16.) * 0.125;
} }
float getAuroraDensity(vec3 position) { float getAuroraDensity(vec3 position)
{
float density = pow(max(0., 1. - 10. * abs(fnoise3(vec3(position.x * 0.25, animationTimer, position.z * 0.25)) - 0.5)), 4.); float density = pow(max(0., 1. - 10. * abs(fnoise3(vec3(position.x * 0.25, animationTimer, position.z * 0.25)) - 0.5)), 4.);
return 1.0 * density * mtsmoothstep(0.0, 0.05, position.y - 1.) * pow(1. - mtsmoothstep(0.05, 2.0, position.y - 1.), 4.); return 0.7 * density * mtsmoothstep(0.0, 0.05, position.y - 1.) * pow(1. - mtsmoothstep(0.05, 2.0, position.y - 1.), 4.);
} }
float getDensity(vec3 position) { float getCoarse(vec3 position) {
float density = texture2D(noiseTextureCoarse, position.xz / 2560. / 16.).r * return texture2D(noiseTextureCoarse, (position.xz - cloudOffset) * 0.5 / CLOUD_SIZE / cloudRadius).r;
}
float getDensity(vec3 position)
{
float density = texture2D(noiseTextureCoarse, (position.xz - cloudOffset) * 0.5 / CLOUD_SIZE / cloudRadius).r *
mtsmoothstep(0.0, cloudThickness * 0.2, position.y - cloudHeight) * mtsmoothstep(0.0, cloudThickness * 0.2, position.y - cloudHeight) *
(1.0 - mtsmoothstep(cloudThickness * 0.5, cloudThickness, position.y - cloudHeight)); (1.0 - mtsmoothstep(cloudThickness * 0.5, cloudThickness, position.y - cloudHeight));
@ -97,17 +110,19 @@ float getDensity(vec3 position) {
return 0.04 * density; return 0.04 * density;
} }
float getBrightness(vec3 position, float bias) { float getBrightness(vec3 position, float lightDistance)
{
float density = 0.; float density = 0.;
for (int i = 0; i < LIGHT_ITERATIONS; i++) { for (int i = 1; i <= LIGHT_ITERATIONS; i++) {
vec3 rayPosition = position - v_LightDirection * LIGHT_DISTANCE * (float(i) + bias) / float(LIGHT_ITERATIONS); vec3 rayPosition = position - v_LightDirection * lightDistance * float(i) / float(LIGHT_ITERATIONS);
density += getDensity(rayPosition) * float(LIGHT_DISTANCE) / float(LIGHT_ITERATIONS); density += getDensity(rayPosition) * float(lightDistance) / float(LIGHT_ITERATIONS);
} }
return exp(-density); return exp(-density);
} }
float blend(float A, float B, float alphaA, float alphaB) { float blend(float A, float B, float alphaA, float alphaB)
{
float alphaC = alphaA + (1. - alphaA) * alphaB; float alphaC = alphaA + (1. - alphaA) * alphaB;
return (alphaA * A + (1. - alphaA) * alphaB * B) / alphaC; return (alphaA * A + (1. - alphaA) * alphaB * B) / alphaC;
} }
@ -116,11 +131,16 @@ void main(void)
{ {
vec3 viewVec = normalize(relativePosition); vec3 viewVec = normalize(relativePosition);
vec3 position = cameraOffset + eyePosition; vec3 position = cameraOffset + cameraPosition;
float depth = getDepth(screenspaceCoordinate) / normalize(viewDirection).z; float depth = toLinearDepth(getDepth(screenspaceCoordinate)) / normalize(viewDirection).z;
float bottomPlaneIntersect = clamp(min((cloudHeight - eyePosition.y) / viewVec.y, depth), 0., 4. * fogDistance); float bottomPlaneIntersect = clamp((cloudHeight - cameraPosition.y) / viewVec.y, 0., 4. * fogDistance);
float topPlaneIntersect = clamp(min((cloudHeight + cloudThickness - eyePosition.y) / viewVec.y, depth), 0., 4. * fogDistance); float topPlaneIntersect = clamp((cloudHeight + cloudThickness - cameraPosition.y) / viewVec.y, 0., 4. * fogDistance);
if ((bottomPlaneIntersect > depth + 5.0) != (topPlaneIntersect > depth + 5.0)) {
bottomPlaneIntersect = min(depth, bottomPlaneIntersect);
topPlaneIntersect = min(depth, topPlaneIntersect);
}
float startDepth = min(bottomPlaneIntersect, topPlaneIntersect); float startDepth = min(bottomPlaneIntersect, topPlaneIntersect);
float endDepth = max(bottomPlaneIntersect, topPlaneIntersect); float endDepth = max(bottomPlaneIntersect, topPlaneIntersect);
@ -129,17 +149,15 @@ void main(void)
vec3 color = vec3(0.); vec3 color = vec3(0.);
float dx = (endDepth - startDepth) / float(ITERATIONS);
float density = 0.; float density = 0.;
float auroraStartDepth = min(max(0., 1.0 / viewVec.y), 8.); float auroraStartDepth = min(max(0., 1.0 / viewVec.y), 8.);
float auroraEndDepth = min(max(0., 3.0 / viewVec.y), 8.); float auroraEndDepth = min(max(0., 3.0 / viewVec.y), 8.);
float rawDepth = getRawDepth(screenspaceCoordinate); float rawDepth = getDepth(screenspaceCoordinate);
if (auroraEndDepth - auroraStartDepth > 0.1 && rawDepth >= 1.0) { if (auroraEndDepth - auroraStartDepth > 0.1 && rawDepth >= 1.0) {
for (int i = 0; i < ITERATIONS; i++) { for (int i = 0; i < AURORA_ITERATIONS; i++) {
vec3 rayPosition = viewVec * (auroraStartDepth + (auroraEndDepth - auroraStartDepth) * (float(i) + bias) / float(ITERATIONS)); vec3 rayPosition = viewVec * (auroraStartDepth + (auroraEndDepth - auroraStartDepth) * (float(i) + bias) / float(AURORA_ITERATIONS));
float localDensity = getAuroraDensity(rayPosition); float localDensity = getAuroraDensity(rayPosition);
@ -154,17 +172,26 @@ void main(void)
float sunlightContribution = 0.; float sunlightContribution = 0.;
float alpha = 0.; float alpha = 0.;
float outScatter = 2. * (dot(v_LightDirection, viewVec) * 0.5 + 0.5); float outScatter = 2. * (dot(v_LightDirection, viewVec) * 0.5 + 0.5);
float forwardScatter = 1. + 2. * pow(min(dot(v_LightDirection, viewVec), 0.), 4.);
density = 0.; density = 0.;
float fogDepth = min(4. * fogDistance, startDepth + 2000.);
endDepth = min(endDepth, fogDepth);
float dx = (endDepth - startDepth) / float(ITERATIONS);
float lightDistance = cloudThickness * 0.5;
if (endDepth - startDepth > 0.1) {
for (int i = 0; i < ITERATIONS; i++) { for (int i = 0; i < ITERATIONS; i++) {
vec3 rayPosition = eyePosition + viewVec * (startDepth + (endDepth - startDepth) * (float(i) + bias) / float(ITERATIONS)); vec3 rayPosition = cameraPosition + viewVec * (startDepth + (endDepth - startDepth) * (float(i) + bias) / float(ITERATIONS));
float localDensity = getDensity(rayPosition) * dx; float localDensity = getDensity(rayPosition) * dx;
if (localDensity < 0.0001) continue; if (localDensity < 0.0001) continue;
float clarity = clamp(fogShadingParameter - fogShadingParameter * length(rayPosition - eyePosition) / (4. * fogDistance), 0.0, 1.0); float clarity = clamp(fogShadingParameter - fogShadingParameter * length(rayPosition - cameraPosition) / (fogDepth), 0.0, 1.0);
float brightness = getBrightness(rayPosition, bias) * exp(-outScatter * localDensity); float outScatterContribution = exp(-0.5 * outScatter * localDensity);
float brightness = getBrightness(rayPosition, lightDistance) * forwardScatter * outScatterContribution * sunStrength + (1. - outScatterContribution);
sunlightContribution = blend(sunlightContribution, brightness, 1. - exp(-density), 1. - exp(-localDensity)); sunlightContribution = blend(sunlightContribution, brightness, 1. - exp(-density), 1. - exp(-localDensity));
alpha = blend(alpha, clarity, 1. - exp(-density), 1. - exp(-localDensity)); alpha = blend(alpha, clarity, 1. - exp(-density), 1. - exp(-localDensity));
@ -172,11 +199,11 @@ void main(void)
if (density > 10.0) break; if (density > 10.0) break;
} }
}
float forwardScatter = 1. + 4. * pow(min(dot(v_LightDirection, viewVec), 0.), 4.);
color.r = (1. - exp(-density)) * alpha; color.r = (1. - exp(-density)) * alpha;
color.g = sunlightContribution * forwardScatter; color.g = sunlightContribution;
color.b *= exp(-density);
gl_FragColor = vec4(color, 1.0); gl_FragColor = vec4(color, 1.0);
} }

View file

@ -1,11 +1,18 @@
uniform mat4 mCameraProjInv; uniform mat4 mCameraProjInv;
uniform mat4 mCameraView; uniform mat4 mCameraView;
uniform vec3 eyePosition; uniform float f_timeofday;
varying vec3 relativePosition; varying vec3 relativePosition;
varying vec3 viewDirection; varying vec3 viewDirection;
varying vec2 screenspaceCoordinate; varying vec2 screenspaceCoordinate;
varying float sunStrength;
float mtsmoothstep(in float edge0, in float edge1, in float x)
{
float t = clamp((x - edge0) / (edge1 - edge0), 0.0, 1.0);
return t * t * (3.0 - 2.0 * t);
}
void main(void) void main(void)
{ {
@ -13,5 +20,18 @@ void main(void)
vec4 p = mCameraProjInv * inVertexPosition; vec4 p = mCameraProjInv * inVertexPosition;
viewDirection = p.xyz / p.w; viewDirection = p.xyz / p.w;
relativePosition = (p.xyz / p.w) * mat3(mCameraView); relativePosition = (p.xyz / p.w) * mat3(mCameraView);
if (f_timeofday < 0.21) {
sunStrength =
(1.0 - mtsmoothstep(0.18, 0.21, f_timeofday));
} else if (f_timeofday >= 0.793) {
sunStrength =
mtsmoothstep(0.793, 0.823, f_timeofday);
} else {
sunStrength =
mtsmoothstep(0.21, 0.26, f_timeofday) *
(1.0 - mtsmoothstep(0.743, 0.793, f_timeofday));
}
gl_Position = inVertexPosition; gl_Position = inVertexPosition;
} }

View file

@ -45,7 +45,7 @@ Clouds::Clouds(scene::ISceneManager* mgr, IShaderSource *ssrc,
s32 id, s32 id,
u32 seed u32 seed
): ):
scene::ISceneNode(mgr->getRootSceneNode(), mgr, id), scene::ISceneNode(g_settings->getBool("enable_volumetric_clouds") ? nullptr : mgr->getRootSceneNode(), mgr, id),
m_seed(seed) m_seed(seed)
{ {
m_enable_shaders = g_settings->getBool("enable_shaders"); m_enable_shaders = g_settings->getBool("enable_shaders");
@ -106,6 +106,14 @@ void Clouds::updateMesh()
std::floor(center_of_drawing_in_noise_f.Y / cloud_size) std::floor(center_of_drawing_in_noise_f.Y / cloud_size)
); );
// The world position of the integer center point of drawing in the noise
v2f world_center_of_drawing_in_noise_f = v2f(
center_of_drawing_in_noise_i.X * cloud_size,
center_of_drawing_in_noise_i.Y * cloud_size
) + m_origin;
m_noise_position = world_center_of_drawing_in_noise_f - ((float)m_cloud_radius_i + 0.5f) * cloud_size;
// Only update mesh if it has moved enough, this saves lots of GPU buffer uploads. // Only update mesh if it has moved enough, this saves lots of GPU buffer uploads.
constexpr float max_d = 5 * BS; constexpr float max_d = 5 * BS;
@ -128,12 +136,6 @@ void Clouds::updateMesh()
const u32 num_faces_to_draw = m_enable_3d ? 6 : 1; const u32 num_faces_to_draw = m_enable_3d ? 6 : 1;
// The world position of the integer center point of drawing in the noise
v2f world_center_of_drawing_in_noise_f = v2f(
center_of_drawing_in_noise_i.X * cloud_size,
center_of_drawing_in_noise_i.Y * cloud_size
) + m_origin;
// Colors with primitive shading // Colors with primitive shading
video::SColorf c_top_f(m_color); video::SColorf c_top_f(m_color);
@ -160,7 +162,7 @@ void Clouds::updateMesh()
// Read noise // Read noise
std::vector<bool> grid(m_cloud_radius_i * 2 * m_cloud_radius_i * 2); m_grid.resize(m_cloud_radius_i * 2 * m_cloud_radius_i * 2);
for(s16 zi = -m_cloud_radius_i; zi < m_cloud_radius_i; zi++) { for(s16 zi = -m_cloud_radius_i; zi < m_cloud_radius_i; zi++) {
u32 si = (zi + m_cloud_radius_i) * m_cloud_radius_i * 2 + m_cloud_radius_i; u32 si = (zi + m_cloud_radius_i) * m_cloud_radius_i * 2 + m_cloud_radius_i;
@ -168,7 +170,7 @@ void Clouds::updateMesh()
for (s16 xi = -m_cloud_radius_i; xi < m_cloud_radius_i; xi++) { for (s16 xi = -m_cloud_radius_i; xi < m_cloud_radius_i; xi++) {
u32 i = si + xi; u32 i = si + xi;
grid[i] = gridFilled( m_grid[i] = gridFilled(
xi + center_of_drawing_in_noise_i.X, xi + center_of_drawing_in_noise_i.X,
zi + center_of_drawing_in_noise_i.Y zi + center_of_drawing_in_noise_i.Y
); );
@ -205,7 +207,7 @@ void Clouds::updateMesh()
u32 i = GETINDEX(xi, zi, m_cloud_radius_i); u32 i = GETINDEX(xi, zi, m_cloud_radius_i);
if (!grid[i]) if (!m_grid[i])
continue; continue;
v2f p0 = v2f(xi,zi)*cloud_size + world_center_of_drawing_in_noise_f; v2f p0 = v2f(xi,zi)*cloud_size + world_center_of_drawing_in_noise_f;
@ -238,7 +240,7 @@ void Clouds::updateMesh()
case 1: // back case 1: // back
if (INAREA(xi, zi - 1, m_cloud_radius_i)) { if (INAREA(xi, zi - 1, m_cloud_radius_i)) {
u32 j = GETINDEX(xi, zi - 1, m_cloud_radius_i); u32 j = GETINDEX(xi, zi - 1, m_cloud_radius_i);
if(grid[j]) if(m_grid[j])
continue; continue;
} }
for (video::S3DVertex &vertex : v) { for (video::S3DVertex &vertex : v) {
@ -253,7 +255,7 @@ void Clouds::updateMesh()
case 2: //right case 2: //right
if (INAREA(xi + 1, zi, m_cloud_radius_i)) { if (INAREA(xi + 1, zi, m_cloud_radius_i)) {
u32 j = GETINDEX(xi+1, zi, m_cloud_radius_i); u32 j = GETINDEX(xi+1, zi, m_cloud_radius_i);
if(grid[j]) if(m_grid[j])
continue; continue;
} }
for (video::S3DVertex &vertex : v) { for (video::S3DVertex &vertex : v) {
@ -268,7 +270,7 @@ void Clouds::updateMesh()
case 3: // front case 3: // front
if (INAREA(xi, zi + 1, m_cloud_radius_i)) { if (INAREA(xi, zi + 1, m_cloud_radius_i)) {
u32 j = GETINDEX(xi, zi + 1, m_cloud_radius_i); u32 j = GETINDEX(xi, zi + 1, m_cloud_radius_i);
if(grid[j]) if(m_grid[j])
continue; continue;
} }
for (video::S3DVertex &vertex : v) { for (video::S3DVertex &vertex : v) {
@ -283,7 +285,7 @@ void Clouds::updateMesh()
case 4: // left case 4: // left
if (INAREA(xi-1, zi, m_cloud_radius_i)) { if (INAREA(xi-1, zi, m_cloud_radius_i)) {
u32 j = GETINDEX(xi-1, zi, m_cloud_radius_i); u32 j = GETINDEX(xi-1, zi, m_cloud_radius_i);
if(grid[j]) if(m_grid[j])
continue; continue;
} }
for (video::S3DVertex &vertex : v) { for (video::S3DVertex &vertex : v) {
@ -343,7 +345,6 @@ void Clouds::updateMesh()
void Clouds::render() void Clouds::render()
{ {
#if 0
if (m_params.density <= 0.0f) if (m_params.density <= 0.0f)
return; // no need to do anything return; // no need to do anything
@ -389,12 +390,38 @@ void Clouds::render()
cloud_full_radius*1.2, fog_density, fog_pixelfog, fog_rangefog); cloud_full_radius*1.2, fog_density, fog_pixelfog, fog_rangefog);
} }
//#if 0
driver->drawMeshBuffer(m_meshbuffer.get()); driver->drawMeshBuffer(m_meshbuffer.get());
//#endif
// Restore fog settings // Restore fog settings
driver->setFog(fog_color, fog_type, fog_start, fog_end, fog_density, driver->setFog(fog_color, fog_type, fog_start, fog_end, fog_density,
fog_pixelfog, fog_rangefog); fog_pixelfog, fog_rangefog);
#endif }
void Clouds::renderDepth() {
if (m_params.density <= 0.0f)
return; // no need to do anything
video::IVideoDriver* driver = SceneManager->getVideoDriver();
updateMesh();
// Update position
{
v2f off_origin = m_origin - m_mesh_origin;
v3f rel(off_origin.X, 0, off_origin.Y);
rel -= intToFloat(m_camera_offset, BS);
setPosition(rel);
updateAbsolutePosition();
}
video::SMaterial material = m_material;
material.MaterialType = video::EMT_SOLID;
material.ZWriteEnable = video::EZW_ON;
driver->setTransform(video::ETS_WORLD, AbsoluteTransformation);
driver->setMaterial(material);
driver->drawMeshBuffer(m_meshbuffer.get());
} }
void Clouds::step(float dtime) void Clouds::step(float dtime)

View file

@ -52,6 +52,8 @@ public:
virtual void render(); virtual void render();
void renderDepth();
virtual const aabb3f &getBoundingBox() const virtual const aabb3f &getBoundingBox() const
{ {
return m_box; return m_box;
@ -140,6 +142,16 @@ public:
const video::SColor getColor() const { return m_color.toSColor(); } const video::SColor getColor() const { return m_color.toSColor(); }
bool getGrid(int x, int y)
{
int index = x + y * m_cloud_radius_i * 2;
if (index < 0 || index >= m_grid.size())
return false;
return m_grid[index];
}
v2f getCloudOffset() const { return m_noise_position; }
private: private:
void updateBox() void updateBox()
{ {
@ -173,6 +185,7 @@ private:
u16 m_cloud_radius_i; u16 m_cloud_radius_i;
u32 m_seed; u32 m_seed;
v3f m_camera_pos; v3f m_camera_pos;
v2f m_noise_position;
v3s16 m_camera_offset; v3s16 m_camera_offset;
bool m_camera_inside_cloud = false; bool m_camera_inside_cloud = false;
@ -180,4 +193,7 @@ private:
bool m_enable_shaders, m_enable_3d; bool m_enable_shaders, m_enable_3d;
video::SColorf m_color = video::SColorf(1.0f, 1.0f, 1.0f, 1.0f); video::SColorf m_color = video::SColorf(1.0f, 1.0f, 1.0f, 1.0f);
CloudParams m_params; CloudParams m_params;
std::vector<bool> m_grid;
}; };

View file

@ -383,11 +383,10 @@ class GameGlobalShaderConstantSetter : public IShaderConstantSetter
m_animation_timer_delta_pixel{"animationTimerDelta"}; m_animation_timer_delta_pixel{"animationTimerDelta"};
CachedPixelShaderSetting<float, 3> m_artificial_light{ "artificialLight" }; CachedPixelShaderSetting<float, 3> m_artificial_light{ "artificialLight" };
CachedPixelShaderSetting<float, 3> m_day_light{"dayLight"}; CachedPixelShaderSetting<float, 3> m_day_light{"dayLight"};
CachedPixelShaderSetting<float, 3> m_eye_position_pixel{ "eyePosition" };
CachedVertexShaderSetting<float, 3> m_eye_position_vertex{ "eyePosition" };
CachedPixelShaderSetting<float, 3> m_minimap_yaw{"yawVec"}; CachedPixelShaderSetting<float, 3> m_minimap_yaw{"yawVec"};
CachedPixelShaderSetting<float, 3> m_camera_offset_pixel{"cameraOffset"};
CachedVertexShaderSetting<float, 3> m_camera_offset_vertex{"cameraOffset"}; CachedVertexShaderSetting<float, 3> m_camera_offset_vertex{"cameraOffset"};
CachedPixelShaderSetting<float, 3> m_camera_offset_pixel{ "cameraOffset" };
CachedVertexShaderSetting<float, 3> m_camera_position_vertex{"cameraPosition"};
CachedPixelShaderSetting<float, 3> m_camera_position_pixel{"cameraPosition"}; CachedPixelShaderSetting<float, 3> m_camera_position_pixel{"cameraPosition"};
CachedVertexShaderSetting<float, 16> m_camera_projinv_vertex{"mCameraProjInv"}; CachedVertexShaderSetting<float, 16> m_camera_projinv_vertex{"mCameraProjInv"};
CachedPixelShaderSetting<float, 16> m_camera_projinv_pixel{"mCameraProjInv"}; CachedPixelShaderSetting<float, 16> m_camera_projinv_pixel{"mCameraProjInv"};
@ -420,6 +419,8 @@ class GameGlobalShaderConstantSetter : public IShaderConstantSetter
CachedPixelShaderSetting<float> m_cloud_height_pixel{"cloudHeight"}; CachedPixelShaderSetting<float> m_cloud_height_pixel{"cloudHeight"};
CachedPixelShaderSetting<float> m_cloud_thickness_pixel{"cloudThickness"}; CachedPixelShaderSetting<float> m_cloud_thickness_pixel{"cloudThickness"};
CachedPixelShaderSetting<float> m_cloud_density_pixel{"cloudDensity"}; CachedPixelShaderSetting<float> m_cloud_density_pixel{"cloudDensity"};
CachedPixelShaderSetting<float, 2> m_cloud_offset_pixel{"cloudOffset"};
CachedPixelShaderSetting<float> m_cloud_radius_pixel{"cloudRadius"};
CachedPixelShaderSetting<float> m_saturation_pixel{"saturation"}; CachedPixelShaderSetting<float> m_saturation_pixel{"saturation"};
float m_gamma; float m_gamma;
CachedPixelShaderSetting<float> m_gamma_pixel{"gamma"}; CachedPixelShaderSetting<float> m_gamma_pixel{"gamma"};
@ -432,6 +433,8 @@ class GameGlobalShaderConstantSetter : public IShaderConstantSetter
CachedPixelShaderSetting<float> m_moon_brightness_pixel{"moonBrightness"}; CachedPixelShaderSetting<float> m_moon_brightness_pixel{"moonBrightness"};
CachedPixelShaderSetting<float> CachedPixelShaderSetting<float>
m_volumetric_light_strength_pixel{"volumetricLightStrength"}; m_volumetric_light_strength_pixel{"volumetricLightStrength"};
CachedPixelShaderSetting<float, 3>
m_volumetric_cloud_color{"cloudColor"};
static constexpr std::array<const char*, 5> SETTING_CALLBACKS = { static constexpr std::array<const char*, 5> SETTING_CALLBACKS = {
"exposure_compensation", "exposure_compensation",
@ -501,20 +504,17 @@ public:
m_animation_timer_delta_vertex.set(&animation_timer_delta_f, services); m_animation_timer_delta_vertex.set(&animation_timer_delta_f, services);
m_animation_timer_delta_pixel.set(&animation_timer_delta_f, services); m_animation_timer_delta_pixel.set(&animation_timer_delta_f, services);
v3f epos = m_client->getEnv().getLocalPlayer()->getEyePosition();
m_eye_position_pixel.set(epos, services);
m_eye_position_vertex.set(epos, services);
if (m_client->getMinimap()) { if (m_client->getMinimap()) {
v3f minimap_yaw = m_client->getMinimap()->getYawVec(); v3f minimap_yaw = m_client->getMinimap()->getYawVec();
m_minimap_yaw.set(minimap_yaw, services); m_minimap_yaw.set(minimap_yaw, services);
} }
v3f offset = intToFloat(m_client->getCamera()->getOffset(), BS); v3f offset = intToFloat(m_client->getCamera()->getOffset(), BS);
m_camera_offset_pixel.set(offset, services);
m_camera_offset_vertex.set(offset, services); m_camera_offset_vertex.set(offset, services);
m_camera_offset_pixel.set(offset, services);
v3f camera_position = m_client->getCamera()->getPosition(); v3f camera_position = m_client->getCamera()->getPosition();
m_camera_position_vertex.set(camera_position, services);
m_camera_position_pixel.set(camera_position, services); m_camera_position_pixel.set(camera_position, services);
core::matrix4 camera_proj = m_client->getCamera()->getCameraNode()->getProjectionMatrix(); core::matrix4 camera_proj = m_client->getCamera()->getCameraNode()->getProjectionMatrix();
@ -573,13 +573,19 @@ public:
// TODO: settings // TODO: settings
Clouds* clouds = m_client->getClouds(); Clouds* clouds = m_client->getClouds();
if (m_client->getClouds()) { if (clouds && g_settings->getBool("enable_volumetric_clouds")) {
float cloud_height = clouds->getHeight() * 10.0f; float cloud_height = clouds->getHeight() * 10.0f;
m_cloud_height_pixel.set(&cloud_height, services); m_cloud_height_pixel.set(&cloud_height, services);
float cloud_thickness = clouds->getThickness() * 10.0f; float cloud_thickness = clouds->getThickness() * 10.0f;
m_cloud_thickness_pixel.set(&cloud_thickness, services); m_cloud_thickness_pixel.set(&cloud_thickness, services);
float cloud_density = clouds->getDensity(); float cloud_density = clouds->getDensity();
m_cloud_density_pixel.set(&cloud_density, services); m_cloud_density_pixel.set(&cloud_density, services);
v2f cloud_offset = clouds->getCloudOffset();
m_cloud_offset_pixel.set(cloud_offset, services);
float cloud_radius = g_settings->getU16("cloud_radius");
m_cloud_radius_pixel.set(&cloud_radius, services);
video::SColor cloud_color = clouds->getColor();
m_volumetric_cloud_color.set(cloud_color, services);
} }
if (m_volumetric_light_enabled) { if (m_volumetric_light_enabled) {
@ -4294,7 +4300,7 @@ void Game::updateClouds(float dtime)
camera_node_position.Y = camera_node_position.Y + camera_offset.Y * BS; camera_node_position.Y = camera_node_position.Y + camera_offset.Y * BS;
camera_node_position.Z = camera_node_position.Z + camera_offset.Z * BS; camera_node_position.Z = camera_node_position.Z + camera_offset.Z * BS;
this->clouds->update(camera_node_position, this->sky->getCloudColor()); this->clouds->update(camera_node_position, this->sky->getCloudColor());
if (this->clouds->isCameraInsideCloud() && this->fogEnabled()) { if (this->clouds->isCameraInsideCloud() && this->fogEnabled() && !g_settings->getBool("enable_volumetric_clouds")) {
// If camera is inside cloud and fog is enabled, use cloud's colors as sky colors. // If camera is inside cloud and fog is enabled, use cloud's colors as sky colors.
video::SColor clouds_dark = this->clouds->getColor().getInterpolated( video::SColor clouds_dark = this->clouds->getColor().getInterpolated(
video::SColor(255, 0, 0, 0), 0.9); video::SColor(255, 0, 0, 0), 0.9);

View file

@ -113,6 +113,18 @@ void TextureBuffer::swapTextures(u8 texture_a, u8 texture_b)
m_textures[texture_b] = temp; m_textures[texture_b] = temp;
} }
void TextureBuffer::setTextureImage(u8 id, video::IImage* image) {
assert(m_definitions[id].valid);
auto &definition = m_definitions[id];
if (m_textures[id]) m_driver->removeTexture(m_textures[id]);
m_textures[id] = m_driver->addTexture(definition.name.c_str(), image);
definition.fixed_size = true;
definition.size = image->getDimension();
definition.dirty = false;
}
bool TextureBuffer::ensureTexture(video::ITexture **texture, const TextureDefinition& definition, PipelineContext &context) bool TextureBuffer::ensureTexture(video::ITexture **texture, const TextureDefinition& definition, PipelineContext &context)
{ {
@ -183,6 +195,8 @@ void TextureBufferOutput::activate(PipelineContext &context)
if (!render_target) if (!render_target)
render_target = driver->addRenderTarget(); render_target = driver->addRenderTarget();
if (disable_clear) m_clear = false;
core::array<video::ITexture *> textures; core::array<video::ITexture *> textures;
core::dimension2du size(0, 0); core::dimension2du size(0, 0);
for (size_t i = 0; i < texture_map.size(); i++) { for (size_t i = 0; i < texture_map.size(); i++) {

View file

@ -141,6 +141,7 @@ public:
virtual video::ITexture *getTexture(u8 index) override; virtual video::ITexture *getTexture(u8 index) override;
virtual void reset(PipelineContext &context) override; virtual void reset(PipelineContext &context) override;
void swapTextures(u8 texture_a, u8 texture_b); void swapTextures(u8 texture_a, u8 texture_b);
void setTextureImage(u8 id, video::IImage* image);
private: private:
static const u8 NO_DEPTH_TEXTURE = 255; static const u8 NO_DEPTH_TEXTURE = 255;
@ -182,6 +183,7 @@ public:
TextureBufferOutput(TextureBuffer *buffer, const std::vector<u8> &texture_map, u8 depth_stencil); TextureBufferOutput(TextureBuffer *buffer, const std::vector<u8> &texture_map, u8 depth_stencil);
virtual ~TextureBufferOutput() override; virtual ~TextureBufferOutput() override;
void activate(PipelineContext &context) override; void activate(PipelineContext &context) override;
void disableClearing() { disable_clear = true; }
private: private:
static const u8 NO_DEPTH_TEXTURE = 255; static const u8 NO_DEPTH_TEXTURE = 255;
@ -190,6 +192,7 @@ private:
u8 depth_stencil { NO_DEPTH_TEXTURE }; u8 depth_stencil { NO_DEPTH_TEXTURE };
video::IRenderTarget* render_target { nullptr }; video::IRenderTarget* render_target { nullptr };
video::IVideoDriver* driver { nullptr }; video::IVideoDriver* driver { nullptr };
bool disable_clear = false;
}; };
/** /**

View file

@ -24,64 +24,114 @@ with this program; if not, write to the Free Software Foundation, Inc.,
#include "client/shader.h" #include "client/shader.h"
#include "client/tile.h" #include "client/tile.h"
#include "settings.h" #include "settings.h"
#include "noise.h"
class NoiseStep : public RenderStep { class NoiseStep : public RenderStep {
public: public:
NoiseStep(u32 shader_id, u8 texture_id) : NoiseStep(TextureBuffer* buffer, u8 id, u32 size) :
shader_id(shader_id), texture_id(texture_id) buffer(buffer), id(id), size(size)
{ {
material.UseMipMaps = false;
material.ZBuffer = true;
material.ZWriteEnable = video::EZW_ON;
} }
void setRenderSource(RenderSource* _source) override { void setRenderSource(RenderSource* _source) override {}
source = _source;
void setRenderTarget(RenderTarget* _target) override {}
void reset(PipelineContext& context) override {}
void run(PipelineContext& context) override
{
if (!needs_run) return;
needs_run = false;
video::IImage* noise_image = context.device->getVideoDriver()->createImage(video::ECF_A8R8G8B8, core::dimension2du(256, 256));
PseudoRandom random;
for (u32 i = 0; i < size * size; ++i) {
noise_image->setPixel(i % size, i / size, video::SColor(0, random.next() % 256, 0, 0));
}
buffer->setTextureImage(id, noise_image);
noise_image->drop();
} }
void setRenderTarget(RenderTarget* _target) override { private:
u32 size;
u8 id;
TextureBuffer* buffer = nullptr;
bool needs_run = true;
};
class CloudDensityStep : public RenderStep {
public:
CloudDensityStep(TextureBuffer* buffer, u8 id, Clouds* clouds) :
buffer(buffer), id(id), clouds(clouds)
{
}
void setRenderSource(RenderSource* _source) override {}
void setRenderTarget(RenderTarget* _target) override {}
void reset(PipelineContext& context) override {}
void run(PipelineContext& context) override
{
u16 cloud_radius = g_settings->getU16("cloud_radius");
if (cloud_radius < 1) cloud_radius = 1;
video::IImage* image = context.device->getVideoDriver()->createImage(video::ECF_A8R8G8B8, core::dimension2du(8 * cloud_radius, 8 * cloud_radius));
for (int x = 0; x < 2 * cloud_radius; ++x) {
for (int y = 0; y < 2 * cloud_radius; ++y) {
bool isFilled = clouds->getGrid(x, y);
for (int i = 0; i < 16; ++i) {
int xp = x * 4 + i % 4;
int yp = y * 4 + i / 4;
image->setPixel(xp, yp, video::SColor(255, isFilled * 255, 0, 0));
}
}
}
buffer->setTextureImage(id, image);
image->drop();
}
private:
Clouds* clouds = nullptr;
u8 id = 0;
TextureBuffer* buffer = nullptr;
};
class CloudDepthStep : public RenderStep {
public:
CloudDepthStep(Clouds* clouds) :
clouds(clouds)
{
}
void setRenderSource(RenderSource* _source) override {}
void setRenderTarget(RenderTarget* _target) override
{
target = _target; target = _target;
} }
void reset(PipelineContext& context) override {} void reset(PipelineContext& context) override {}
void run(PipelineContext& context) override { void run(PipelineContext& context) override
video::ITexture* texture = source->getTexture(texture_id); {
if (texture != last_texture) {
last_texture = texture;
if (target) if (target)
target->activate(context); target->activate(context);
// attach the shader clouds->renderDepth();
material.MaterialType = context.client->getShaderSource()->getShaderInfo(shader_id).material;
auto driver = context.device->getVideoDriver();
static const video::SColor color = video::SColor(0, 0, 0, 255);
static const video::S3DVertex vertices[4] = {
video::S3DVertex(1.0, -1.0, 0.0, 0.0, 0.0, -1.0,
color, 1.0, 0.0),
video::S3DVertex(-1.0, -1.0, 0.0, 0.0, 0.0, -1.0,
color, 0.0, 0.0),
video::S3DVertex(-1.0, 1.0, 0.0, 0.0, 0.0, -1.0,
color, 0.0, 1.0),
video::S3DVertex(1.0, 1.0, 0.0, 0.0, 0.0, -1.0,
color, 1.0, 1.0),
};
static const u16 indices[6] = { 0, 1, 2, 2, 3, 0 };
driver->setMaterial(material);
driver->drawVertexPrimitiveList(&vertices, 4, &indices, 2);
}
} }
private: private:
u32 shader_id; Clouds* clouds = nullptr;
u8 texture_id; RenderTarget* target = nullptr;
video::SMaterial material;
video::ITexture* last_texture = nullptr;
RenderSource* source{ nullptr };
RenderTarget* target{ nullptr };
}; };
PostProcessingStep::PostProcessingStep(u32 _shader_id, const std::vector<u8> &_texture_map) : PostProcessingStep::PostProcessingStep(u32 _shader_id, const std::vector<u8> &_texture_map) :
@ -160,6 +210,11 @@ void PostProcessingStep::setWrapRepeat(u8 index, bool value) {
material.TextureLayers[index].TextureWrapV = value ? video::ETC_REPEAT : video::ETC_CLAMP_TO_EDGE; material.TextureLayers[index].TextureWrapV = value ? video::ETC_REPEAT : video::ETC_CLAMP_TO_EDGE;
} }
void PostProcessingStep::disableDepthTest() {
material.ZBuffer = video::ECFN_DISABLED;
material.ZWriteEnable = video::EZW_OFF;
}
RenderStep *addPostProcessing(RenderPipeline *pipeline, RenderStep *previousStep, v2f scale, Client *client) RenderStep *addPostProcessing(RenderPipeline *pipeline, RenderStep *previousStep, v2f scale, Client *client)
{ {
auto buffer = pipeline->createOwned<TextureBuffer>(); auto buffer = pipeline->createOwned<TextureBuffer>();
@ -201,8 +256,8 @@ RenderStep *addPostProcessing(RenderPipeline *pipeline, RenderStep *previousStep
const bool enable_ssaa = antialiasing == "ssaa"; const bool enable_ssaa = antialiasing == "ssaa";
const bool enable_fxaa = antialiasing == "fxaa"; const bool enable_fxaa = antialiasing == "fxaa";
const bool enable_volumetric_light = g_settings->getBool("enable_volumetric_lighting") && enable_bloom; const bool enable_volumetric_light = g_settings->getBool("enable_volumetric_lighting") && enable_bloom;
const bool enable_volumetric_clouds = true; // TODO: Proper constraints
// TODO: Add clouds setting const bool enable_volumetric_clouds = g_settings->getBool("enable_volumetric_clouds") && client->getClouds();
if (enable_ssaa) { if (enable_ssaa) {
u16 ssaa_scale = MYMAX(2, g_settings->getU16("fsaa")); u16 ssaa_scale = MYMAX(2, g_settings->getU16("fsaa"));
@ -227,21 +282,20 @@ RenderStep *addPostProcessing(RenderPipeline *pipeline, RenderStep *previousStep
u8 source = TEXTURE_COLOR; u8 source = TEXTURE_COLOR;
u8 final_color_source = TEXTURE_COLOR;
if (enable_volumetric_clouds) { if (enable_volumetric_clouds) {
const u16 cloud_radius = g_settings->getU16("cloud_radius");
buffer->setTexture(TEXTURE_NOISE, core::dimension2du(256, 256), "noise", color_format); buffer->setTexture(TEXTURE_NOISE, core::dimension2du(256, 256), "noise", color_format);
pipeline->addStep<NoiseStep>(buffer, TEXTURE_NOISE, 256);
shader_id = client->getShaderSource()->getShader("noise_shader", TILE_MATERIAL_PLAIN, NDT_MESH); buffer->setTexture(TEXTURE_NOISE_COARSE, core::dimension2du(cloud_radius * 8, cloud_radius * 8), "noise_coarse", color_format);
RenderStep *noise_step = pipeline->addStep<NoiseStep>(shader_id, TEXTURE_NOISE); pipeline->addStep<CloudDensityStep>(buffer, TEXTURE_NOISE_COARSE, client->getClouds());
noise_step->setRenderSource(buffer);
noise_step->setRenderTarget(pipeline->createOwned<TextureBufferOutput>(buffer, TEXTURE_NOISE));
buffer->setTexture(TEXTURE_NOISE_COARSE, core::dimension2du(256, 256), "noise", color_format); u32 undersampling = core::clamp(g_settings->getU32("volumetrics_undersampling"), (u32)1, (u32)4);
shader_id = client->getShaderSource()->getShader("coarse_noise_shader", TILE_MATERIAL_PLAIN, NDT_MESH); buffer->setTexture(TEXTURE_CLOUDS_1, scale / (float)undersampling, "clouds_1", color_format, /*clear:*/ true);
noise_step = pipeline->addStep<PostProcessingStep>(shader_id, std::vector<u8>());
noise_step->setRenderTarget(pipeline->createOwned<TextureBufferOutput>(buffer, TEXTURE_NOISE_COARSE));
buffer->setTexture(TEXTURE_CLOUDS_1, scale * 0.25f, "clouds_1", color_format, /*clear:*/ true);
buffer->setTexture(TEXTURE_CLOUDS_2, scale, "clouds_2", color_format); buffer->setTexture(TEXTURE_CLOUDS_2, scale, "clouds_2", color_format);
buffer->setTexture(TEXTURE_CLOUD_DENSITY, scale, "cloud_density", color_format); buffer->setTexture(TEXTURE_CLOUD_DENSITY, scale, "cloud_density", color_format);
@ -253,16 +307,24 @@ RenderStep *addPostProcessing(RenderPipeline *pipeline, RenderStep *previousStep
volumetric_clouds->setBilinearFilter(2, true); volumetric_clouds->setBilinearFilter(2, true);
volumetric_clouds->setWrapRepeat(1, true); volumetric_clouds->setWrapRepeat(1, true);
volumetric_clouds->setWrapRepeat(2, true); volumetric_clouds->setWrapRepeat(2, true);
volumetric_clouds->disableDepthTest();
source = TEXTURE_CLOUDS_1; source = TEXTURE_CLOUDS_1;
shader_id = client->getShaderSource()->getShader("clouds_merge", TILE_MATERIAL_PLAIN, NDT_MESH); shader_id = client->getShaderSource()->getShader("clouds_merge", TILE_MATERIAL_PLAIN, NDT_MESH);
PostProcessingStep* blend_clouds = pipeline->addStep<PostProcessingStep>(shader_id, std::vector<u8> { TEXTURE_CLOUDS_1, TEXTURE_COLOR }); PostProcessingStep* blend_clouds = pipeline->addStep<PostProcessingStep>(shader_id, std::vector<u8> { TEXTURE_CLOUDS_1, TEXTURE_COLOR, TEXTURE_DEPTH });
blend_clouds->setRenderSource(buffer); blend_clouds->setRenderSource(buffer);
blend_clouds->setRenderTarget(pipeline->createOwned<TextureBufferOutput>(buffer, TEXTURE_CLOUDS_2)); blend_clouds->setRenderTarget(pipeline->createOwned<TextureBufferOutput>(buffer, TEXTURE_CLOUDS_2));
blend_clouds->setBilinearFilter(0, true); blend_clouds->setBilinearFilter(0, true);
blend_clouds->disableDepthTest();
CloudDepthStep* cloud_depth = pipeline->addStep<CloudDepthStep>(client->getClouds());
TextureBufferOutput* cloud_depth_output = pipeline->createOwned<TextureBufferOutput>(buffer, std::vector<u8>{ TEXTURE_COLOR }, TEXTURE_DEPTH);
cloud_depth_output->disableClearing();
cloud_depth->setRenderTarget(cloud_depth_output);
source = TEXTURE_CLOUDS_2; source = TEXTURE_CLOUDS_2;
final_color_source = TEXTURE_CLOUDS_2;
} }
// common downsampling step for bloom or autoexposure // common downsampling step for bloom or autoexposure
@ -281,7 +343,7 @@ RenderStep *addPostProcessing(RenderPipeline *pipeline, RenderStep *previousStep
// get bright spots // get bright spots
u32 shader_id = client->getShaderSource()->getShader("extract_bloom", TILE_MATERIAL_PLAIN, NDT_MESH); u32 shader_id = client->getShaderSource()->getShader("extract_bloom", TILE_MATERIAL_PLAIN, NDT_MESH);
auto extract_bloom = pipeline->addStep<PostProcessingStep>(shader_id, std::vector<u8> { source, TEXTURE_EXPOSURE_1 }); RenderStep* extract_bloom = pipeline->addStep<PostProcessingStep>(shader_id, std::vector<u8> { source, TEXTURE_EXPOSURE_1 });
extract_bloom->setRenderSource(buffer); extract_bloom->setRenderSource(buffer);
extract_bloom->setRenderTarget(pipeline->createOwned<TextureBufferOutput>(buffer, TEXTURE_BLOOM)); extract_bloom->setRenderTarget(pipeline->createOwned<TextureBufferOutput>(buffer, TEXTURE_BLOOM));
source = TEXTURE_BLOOM; source = TEXTURE_BLOOM;
@ -332,14 +394,14 @@ RenderStep *addPostProcessing(RenderPipeline *pipeline, RenderStep *previousStep
} }
// FXAA // FXAA
u8 final_stage_source = TEXTURE_CLOUDS_2; u8 final_stage_source = final_color_source;
if (enable_fxaa) { if (enable_fxaa) {
final_stage_source = TEXTURE_FXAA; final_stage_source = TEXTURE_FXAA;
buffer->setTexture(TEXTURE_FXAA, scale, "fxaa", color_format); buffer->setTexture(TEXTURE_FXAA, scale, "fxaa", color_format);
shader_id = client->getShaderSource()->getShader("fxaa", TILE_MATERIAL_PLAIN); shader_id = client->getShaderSource()->getShader("fxaa", TILE_MATERIAL_PLAIN);
PostProcessingStep *effect = pipeline->createOwned<PostProcessingStep>(shader_id, std::vector<u8> { TEXTURE_COLOR }); PostProcessingStep* effect = pipeline->createOwned<PostProcessingStep>(shader_id, std::vector<u8> { final_color_source });
pipeline->addStep(effect); pipeline->addStep(effect);
effect->setBilinearFilter(0, true); effect->setBilinearFilter(0, true);
effect->setRenderSource(buffer); effect->setRenderSource(buffer);

View file

@ -52,6 +52,10 @@ public:
void setWrapRepeat(u8 index, bool value); void setWrapRepeat(u8 index, bool value);
void setColor(video::SColor color);
void disableDepthTest();
private: private:
u32 shader_id; u32 shader_id;
std::vector<u8> texture_map; std::vector<u8> texture_map;

View file

@ -342,6 +342,7 @@ void set_default_settings()
settings->setDefault("bloom_intensity", "0.05"); settings->setDefault("bloom_intensity", "0.05");
settings->setDefault("bloom_radius", "1"); settings->setDefault("bloom_radius", "1");
settings->setDefault("enable_volumetric_lighting", "false"); settings->setDefault("enable_volumetric_lighting", "false");
settings->setDefault("enable_volumetric_clouds", "false");
settings->setDefault("enable_bumpmaps", "false"); settings->setDefault("enable_bumpmaps", "false");
// Effects Shadows // Effects Shadows