mirror of
https://github.com/luanti-org/luanti.git
synced 2025-09-15 18:57:08 +00:00
Update volumetrics
This commit is contained in:
parent
22ba7449f2
commit
e6752008e0
17 changed files with 420 additions and 181 deletions
|
@ -1,24 +1,49 @@
|
|||
#define cloudsTexture texture0
|
||||
#define sceneTexture texture1
|
||||
#define depthmap texture2
|
||||
|
||||
uniform sampler2D cloudsTexture;
|
||||
uniform sampler2D sceneTexture;
|
||||
uniform sampler2D depthmap;
|
||||
uniform vec2 texelSize0;
|
||||
|
||||
uniform vec3 dayLight;
|
||||
uniform vec3 cloudColor;
|
||||
|
||||
varying vec2 screenspaceCoordinate;
|
||||
varying vec3 relativePosition;
|
||||
varying vec3 viewDirection;
|
||||
varying vec3 sunTint;
|
||||
varying float auroraFactor;
|
||||
|
||||
uniform vec3 cameraOffset;
|
||||
uniform vec3 cameraPosition;
|
||||
|
||||
uniform float cameraNear;
|
||||
uniform float cameraFar;
|
||||
|
||||
uniform float cloudHeight;
|
||||
uniform float cloudThickness;
|
||||
|
||||
float getDepth(vec2 screenspacePosition) {
|
||||
float depth = texture2D(depthmap, screenspacePosition * 0.5 + 0.5).r;
|
||||
return cameraNear * cameraFar / (cameraFar + depth * (cameraNear - cameraFar));
|
||||
}
|
||||
|
||||
vec4 sampleClouds(vec2 uv) {
|
||||
vec4 cloudsKey = texture2D(cloudsTexture, uv);
|
||||
|
||||
const vec3 darkColor = vec3(0.05, 0.1, 0.2);
|
||||
//const vec3 darkColor = vec3(0.05, 0.1, 0.2);
|
||||
vec3 darkColor = vec3(0.2, 0.4, 0.8) * dayLight;
|
||||
const vec3 auroraDark = vec3(0., 0.5, 0.5);
|
||||
const vec3 auroraBright = vec3(0., 0.5, .0);
|
||||
|
||||
//const vec3 auroraDark = vec3(0.);
|
||||
//const vec3 auroraBright = vec3(0.);
|
||||
|
||||
return vec4(
|
||||
mix(auroraDark, auroraBright, cloudsKey.b) * cloudsKey.b * max(0., 1. - cloudsKey.r) +
|
||||
cloudsKey.r * (darkColor * max(0., 1. - cloudsKey.g) + dayLight * cloudsKey.g),
|
||||
mix(auroraDark, auroraBright, cloudsKey.b) * cloudsKey.b * auroraFactor +
|
||||
cloudsKey.r * cloudColor * (darkColor * max(0., 1. - cloudsKey.g) + dayLight * sunTint * cloudsKey.g),
|
||||
cloudsKey.r);
|
||||
}
|
||||
|
||||
|
@ -37,8 +62,22 @@ vec4 getClouds(vec2 uv) {
|
|||
|
||||
void main(void)
|
||||
{
|
||||
vec4 cloudsColor = getClouds(screenspaceCoordinate * 0.5 + 0.5);
|
||||
vec3 viewVec = normalize(relativePosition);
|
||||
|
||||
vec3 position = cameraOffset + cameraPosition;
|
||||
|
||||
float depth = getDepth(screenspaceCoordinate) / normalize(viewDirection).z;
|
||||
float bottomPlaneIntersect = max((cloudHeight - cameraPosition.y) / viewVec.y, 0.);
|
||||
float topPlaneIntersect = max((cloudHeight + cloudThickness - cameraPosition.y) / viewVec.y, 0.);
|
||||
float minPlane = min(bottomPlaneIntersect, topPlaneIntersect);
|
||||
|
||||
vec4 sceneColor = texture2D(sceneTexture, screenspaceCoordinate * 0.5 + 0.5);
|
||||
|
||||
gl_FragColor = vec4(sceneColor.rgb * (1. - cloudsColor.a) + cloudsColor.rgb, 1.);
|
||||
if (depth > minPlane) {
|
||||
vec4 finalColor = getClouds(screenspaceCoordinate * 0.5 + 0.5);
|
||||
|
||||
gl_FragColor = vec4(sceneColor.rgb * (1. - finalColor.a) + finalColor.rgb, 1.);
|
||||
} else {
|
||||
gl_FragColor = sceneColor;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,7 +1,48 @@
|
|||
uniform mat4 mCameraProjInv;
|
||||
uniform mat4 mCameraView;
|
||||
uniform vec3 v_LightDirection;
|
||||
uniform float f_timeofday;
|
||||
|
||||
varying vec3 relativePosition;
|
||||
varying vec3 viewDirection;
|
||||
varying vec2 screenspaceCoordinate;
|
||||
varying vec3 sunTint;
|
||||
varying float auroraFactor;
|
||||
|
||||
vec3 getDirectLightScatteringAtGround(vec3 v_LightDirection)
|
||||
{
|
||||
// Based on talk at 2002 Game Developers Conference by Naty Hoffman and Arcot J. Preetham
|
||||
const float beta_r0 = 1e-5; // Rayleigh scattering beta
|
||||
|
||||
// These factors are calculated based on expected value of scattering factor of 1e-5
|
||||
// for Nitrogen at 532nm (green), 2e25 molecules/m3 in atmosphere
|
||||
const vec3 beta_r0_l = vec3(3.3362176e-01, 8.75378289198826e-01, 1.95342379700656) * beta_r0; // wavelength-dependent scattering
|
||||
|
||||
const float atmosphere_height = 15000.; // height of the atmosphere in meters
|
||||
// sun/moon light at the ground level, after going through the atmosphere
|
||||
return exp(-beta_r0_l * atmosphere_height / (1e-5 - dot(v_LightDirection, vec3(0., 1., 0.))));
|
||||
}
|
||||
|
||||
// custom smoothstep implementation because it's not defined in glsl1.2
|
||||
// https://docs.gl/sl4/smoothstep
|
||||
float mtsmoothstep(in float edge0, in float edge1, in float x)
|
||||
{
|
||||
float t = clamp((x - edge0) / (edge1 - edge0), 0.0, 1.0);
|
||||
return t * t * (3.0 - 2.0 * t);
|
||||
}
|
||||
|
||||
void main(void)
|
||||
{
|
||||
vec4 p = mCameraProjInv * inVertexPosition;
|
||||
viewDirection = p.xyz / p.w;
|
||||
relativePosition = (p.xyz / p.w) * mat3(mCameraView);
|
||||
screenspaceCoordinate = inVertexPosition.xy;
|
||||
|
||||
auroraFactor = 1. - mtsmoothstep(0.13, 0.15, f_timeofday) * mtsmoothstep(0.87, 0.85, f_timeofday);
|
||||
|
||||
float tintFactor = mtsmoothstep(0.21, 0.24, f_timeofday) * mtsmoothstep(0.793, 0.753, f_timeofday);
|
||||
|
||||
sunTint = mix(vec3(1.0), getDirectLightScatteringAtGround(v_LightDirection), tintFactor);
|
||||
|
||||
gl_Position = inVertexPosition;
|
||||
}
|
||||
|
|
|
@ -1,17 +0,0 @@
|
|||
uniform float cloudDensity;
|
||||
|
||||
// Pseudorandom number generator
|
||||
float rand(vec2 n) {
|
||||
return fract(sin(dot(n, vec2(12.9898, 4.1414))) * 43758.5453);
|
||||
}
|
||||
|
||||
// More random pseudorandom number generator;
|
||||
float noise(vec2 p){
|
||||
vec2 p2 = p + vec2(rand(p), rand(p.yx));
|
||||
return rand(p2);
|
||||
}
|
||||
|
||||
void main(void)
|
||||
{
|
||||
gl_FragColor = vec4(vec3(step(noise(floor(gl_FragCoord.xy * 0.25)), cloudDensity)), 1.);
|
||||
}
|
|
@ -1,4 +0,0 @@
|
|||
void main(void)
|
||||
{
|
||||
gl_Position = inVertexPosition;
|
||||
}
|
|
@ -1,15 +0,0 @@
|
|||
// Pseudorandom number generator
|
||||
float rand(vec2 n) {
|
||||
return fract(sin(dot(n, vec2(12.9898, 4.1414))) * 43758.5453);
|
||||
}
|
||||
|
||||
// More random pseudorandom number generator;
|
||||
float noise(vec2 p){
|
||||
vec2 p2 = p + vec2(rand(p), rand(p.yx));
|
||||
return rand(p2);
|
||||
}
|
||||
|
||||
void main(void)
|
||||
{
|
||||
gl_FragColor = vec4(vec3(noise(gl_FragCoord.xy)), 1.);
|
||||
}
|
|
@ -1,4 +0,0 @@
|
|||
void main(void)
|
||||
{
|
||||
gl_Position = inVertexPosition;
|
||||
}
|
|
@ -2,10 +2,13 @@
|
|||
#define noiseTexture texture1
|
||||
#define noiseTextureCoarse texture2
|
||||
|
||||
#define PROBING_ITERATIONS 30
|
||||
#define ITERATIONS 50
|
||||
#define LIGHT_ITERATIONS 10
|
||||
#define LIGHT_DISTANCE 100.
|
||||
#define AURORA_ITERATIONS 100
|
||||
#define LIGHT_ITERATIONS 3
|
||||
#define AURORA_ITERATIONS 80
|
||||
|
||||
// See clouds.cpp
|
||||
#define CLOUD_SIZE 640.0
|
||||
|
||||
uniform sampler2D depthmap;
|
||||
uniform sampler2D noiseTexture;
|
||||
|
@ -19,17 +22,17 @@ uniform float cloudDensity;
|
|||
|
||||
varying vec3 relativePosition;
|
||||
varying vec3 viewDirection;
|
||||
uniform vec3 eyePosition;
|
||||
uniform vec3 cameraOffset;
|
||||
uniform vec3 cameraPosition;
|
||||
|
||||
uniform mat4 mCameraView;
|
||||
uniform mat4 mCameraProjInv;
|
||||
|
||||
uniform float cameraNear;
|
||||
uniform float cameraFar;
|
||||
|
||||
uniform vec2 cloudOffset;
|
||||
uniform float cloudRadius;
|
||||
|
||||
varying vec2 screenspaceCoordinate;
|
||||
varying float sunStrength;
|
||||
|
||||
uniform float fogDistance;
|
||||
uniform float fogShadingParameter;
|
||||
|
@ -41,7 +44,8 @@ uniform float animationTimer;
|
|||
// Derived From http://alex.vlachos.com/graphics/Alex_Vlachos_Advanced_VR_Rendering_GDC2015.pdf
|
||||
// and https://www.shadertoy.com/view/MslGR8 (5th one starting from the bottom)
|
||||
// NOTE: `frag_coord` is in pixels (i.e. not normalized UV).
|
||||
float screenSpaceDither(highp vec2 frag_coord) {
|
||||
float screenSpaceDither(highp vec2 frag_coord)
|
||||
{
|
||||
// Iestyn's RGB dither (7 asm instructions) from Portal 2 X360, slightly modified for VR.
|
||||
highp float dither = dot(vec2(171.0, 231.0), frag_coord);
|
||||
dither = fract(dither / 103.0);
|
||||
|
@ -57,38 +61,47 @@ float mtsmoothstep(in float edge0, in float edge1, in float x)
|
|||
return t * t * (3.0 - 2.0 * t);
|
||||
}
|
||||
|
||||
float getDepth(vec2 screenspacePosition) {
|
||||
float depth = texture2D(depthmap, screenspacePosition * 0.5 + 0.5).r;
|
||||
float toLinearDepth(float depth)
|
||||
{
|
||||
return cameraNear * cameraFar / (cameraFar + depth * (cameraNear - cameraFar));
|
||||
}
|
||||
|
||||
float getRawDepth(vec2 screenspacePosition) {
|
||||
float getDepth(vec2 screenspacePosition)
|
||||
{
|
||||
return texture2D(depthmap, screenspacePosition * 0.5 + 0.5).r;
|
||||
}
|
||||
|
||||
float noise(vec3 p){
|
||||
//p.y *= 1.;
|
||||
float noise(vec3 p)
|
||||
{
|
||||
float y = floor(p.y);
|
||||
float f1 = texture2D(noiseTexture, p.xz / 256. + y * 0.2).r;
|
||||
float f2 = texture2D(noiseTexture, p.xz / 256. + y * 0.2 + 0.2).r;
|
||||
return mix(f1, f2, fract(p.y));
|
||||
}
|
||||
|
||||
float fnoise(vec3 p) {
|
||||
float fnoise(vec3 p)
|
||||
{
|
||||
return noise(p * 4.) * 0.5 + noise(p * 8.) * 0.25;
|
||||
}
|
||||
|
||||
float fnoise3(vec3 p) {
|
||||
float fnoise3(vec3 p)
|
||||
{
|
||||
return noise(p * 4.) * 0.5 + noise(p * 8.) * 0.25 + noise(p * 16.) * 0.125;
|
||||
}
|
||||
|
||||
float getAuroraDensity(vec3 position) {
|
||||
float getAuroraDensity(vec3 position)
|
||||
{
|
||||
float density = pow(max(0., 1. - 10. * abs(fnoise3(vec3(position.x * 0.25, animationTimer, position.z * 0.25)) - 0.5)), 4.);
|
||||
return 1.0 * density * mtsmoothstep(0.0, 0.05, position.y - 1.) * pow(1. - mtsmoothstep(0.05, 2.0, position.y - 1.), 4.);
|
||||
return 0.7 * density * mtsmoothstep(0.0, 0.05, position.y - 1.) * pow(1. - mtsmoothstep(0.05, 2.0, position.y - 1.), 4.);
|
||||
}
|
||||
|
||||
float getDensity(vec3 position) {
|
||||
float density = texture2D(noiseTextureCoarse, position.xz / 2560. / 16.).r *
|
||||
float getCoarse(vec3 position) {
|
||||
return texture2D(noiseTextureCoarse, (position.xz - cloudOffset) * 0.5 / CLOUD_SIZE / cloudRadius).r;
|
||||
}
|
||||
|
||||
float getDensity(vec3 position)
|
||||
{
|
||||
float density = texture2D(noiseTextureCoarse, (position.xz - cloudOffset) * 0.5 / CLOUD_SIZE / cloudRadius).r *
|
||||
mtsmoothstep(0.0, cloudThickness * 0.2, position.y - cloudHeight) *
|
||||
(1.0 - mtsmoothstep(cloudThickness * 0.5, cloudThickness, position.y - cloudHeight));
|
||||
|
||||
|
@ -97,17 +110,19 @@ float getDensity(vec3 position) {
|
|||
return 0.04 * density;
|
||||
}
|
||||
|
||||
float getBrightness(vec3 position, float bias) {
|
||||
float getBrightness(vec3 position, float lightDistance)
|
||||
{
|
||||
float density = 0.;
|
||||
for (int i = 0; i < LIGHT_ITERATIONS; i++) {
|
||||
vec3 rayPosition = position - v_LightDirection * LIGHT_DISTANCE * (float(i) + bias) / float(LIGHT_ITERATIONS);
|
||||
for (int i = 1; i <= LIGHT_ITERATIONS; i++) {
|
||||
vec3 rayPosition = position - v_LightDirection * lightDistance * float(i) / float(LIGHT_ITERATIONS);
|
||||
|
||||
density += getDensity(rayPosition) * float(LIGHT_DISTANCE) / float(LIGHT_ITERATIONS);
|
||||
density += getDensity(rayPosition) * float(lightDistance) / float(LIGHT_ITERATIONS);
|
||||
}
|
||||
return exp(-density);
|
||||
}
|
||||
|
||||
float blend(float A, float B, float alphaA, float alphaB) {
|
||||
float blend(float A, float B, float alphaA, float alphaB)
|
||||
{
|
||||
float alphaC = alphaA + (1. - alphaA) * alphaB;
|
||||
return (alphaA * A + (1. - alphaA) * alphaB * B) / alphaC;
|
||||
}
|
||||
|
@ -116,11 +131,16 @@ void main(void)
|
|||
{
|
||||
vec3 viewVec = normalize(relativePosition);
|
||||
|
||||
vec3 position = cameraOffset + eyePosition;
|
||||
vec3 position = cameraOffset + cameraPosition;
|
||||
|
||||
float depth = getDepth(screenspaceCoordinate) / normalize(viewDirection).z;
|
||||
float bottomPlaneIntersect = clamp(min((cloudHeight - eyePosition.y) / viewVec.y, depth), 0., 4. * fogDistance);
|
||||
float topPlaneIntersect = clamp(min((cloudHeight + cloudThickness - eyePosition.y) / viewVec.y, depth), 0., 4. * fogDistance);
|
||||
float depth = toLinearDepth(getDepth(screenspaceCoordinate)) / normalize(viewDirection).z;
|
||||
float bottomPlaneIntersect = clamp((cloudHeight - cameraPosition.y) / viewVec.y, 0., 4. * fogDistance);
|
||||
float topPlaneIntersect = clamp((cloudHeight + cloudThickness - cameraPosition.y) / viewVec.y, 0., 4. * fogDistance);
|
||||
|
||||
if ((bottomPlaneIntersect > depth + 5.0) != (topPlaneIntersect > depth + 5.0)) {
|
||||
bottomPlaneIntersect = min(depth, bottomPlaneIntersect);
|
||||
topPlaneIntersect = min(depth, topPlaneIntersect);
|
||||
}
|
||||
|
||||
float startDepth = min(bottomPlaneIntersect, topPlaneIntersect);
|
||||
float endDepth = max(bottomPlaneIntersect, topPlaneIntersect);
|
||||
|
@ -129,17 +149,15 @@ void main(void)
|
|||
|
||||
vec3 color = vec3(0.);
|
||||
|
||||
float dx = (endDepth - startDepth) / float(ITERATIONS);
|
||||
|
||||
float density = 0.;
|
||||
|
||||
float auroraStartDepth = min(max(0., 1.0 / viewVec.y), 8.);
|
||||
float auroraEndDepth = min(max(0., 3.0 / viewVec.y), 8.);
|
||||
float rawDepth = getRawDepth(screenspaceCoordinate);
|
||||
float rawDepth = getDepth(screenspaceCoordinate);
|
||||
|
||||
if (auroraEndDepth - auroraStartDepth > 0.1 && rawDepth >= 1.0) {
|
||||
for (int i = 0; i < ITERATIONS; i++) {
|
||||
vec3 rayPosition = viewVec * (auroraStartDepth + (auroraEndDepth - auroraStartDepth) * (float(i) + bias) / float(ITERATIONS));
|
||||
for (int i = 0; i < AURORA_ITERATIONS; i++) {
|
||||
vec3 rayPosition = viewVec * (auroraStartDepth + (auroraEndDepth - auroraStartDepth) * (float(i) + bias) / float(AURORA_ITERATIONS));
|
||||
|
||||
float localDensity = getAuroraDensity(rayPosition);
|
||||
|
||||
|
@ -150,33 +168,42 @@ void main(void)
|
|||
}
|
||||
|
||||
color.b = density * (auroraEndDepth - auroraStartDepth) / float(AURORA_ITERATIONS);
|
||||
|
||||
|
||||
float sunlightContribution = 0.;
|
||||
float alpha = 0.;
|
||||
float outScatter = 2. * (dot(v_LightDirection, viewVec) * 0.5 + 0.5);
|
||||
float forwardScatter = 1. + 2. * pow(min(dot(v_LightDirection, viewVec), 0.), 4.);
|
||||
density = 0.;
|
||||
|
||||
for (int i = 0; i < ITERATIONS; i++) {
|
||||
vec3 rayPosition = eyePosition + viewVec * (startDepth + (endDepth - startDepth) * (float(i) + bias) / float(ITERATIONS));
|
||||
float fogDepth = min(4. * fogDistance, startDepth + 2000.);
|
||||
endDepth = min(endDepth, fogDepth);
|
||||
|
||||
float localDensity = getDensity(rayPosition) * dx;
|
||||
float dx = (endDepth - startDepth) / float(ITERATIONS);
|
||||
float lightDistance = cloudThickness * 0.5;
|
||||
|
||||
if (localDensity < 0.0001) continue;
|
||||
if (endDepth - startDepth > 0.1) {
|
||||
for (int i = 0; i < ITERATIONS; i++) {
|
||||
vec3 rayPosition = cameraPosition + viewVec * (startDepth + (endDepth - startDepth) * (float(i) + bias) / float(ITERATIONS));
|
||||
|
||||
float clarity = clamp(fogShadingParameter - fogShadingParameter * length(rayPosition - eyePosition) / (4. * fogDistance), 0.0, 1.0);
|
||||
float brightness = getBrightness(rayPosition, bias) * exp(-outScatter * localDensity);
|
||||
sunlightContribution = blend(sunlightContribution, brightness, 1. - exp(-density), 1. - exp(-localDensity));
|
||||
alpha = blend(alpha, clarity, 1. - exp(-density), 1. - exp(-localDensity));
|
||||
float localDensity = getDensity(rayPosition) * dx;
|
||||
|
||||
density += localDensity;
|
||||
if (localDensity < 0.0001) continue;
|
||||
|
||||
if (density > 10.0) break;
|
||||
float clarity = clamp(fogShadingParameter - fogShadingParameter * length(rayPosition - cameraPosition) / (fogDepth), 0.0, 1.0);
|
||||
float outScatterContribution = exp(-0.5 * outScatter * localDensity);
|
||||
float brightness = getBrightness(rayPosition, lightDistance) * forwardScatter * outScatterContribution * sunStrength + (1. - outScatterContribution);
|
||||
sunlightContribution = blend(sunlightContribution, brightness, 1. - exp(-density), 1. - exp(-localDensity));
|
||||
alpha = blend(alpha, clarity, 1. - exp(-density), 1. - exp(-localDensity));
|
||||
|
||||
density += localDensity;
|
||||
|
||||
if (density > 10.0) break;
|
||||
}
|
||||
}
|
||||
|
||||
float forwardScatter = 1. + 4. * pow(min(dot(v_LightDirection, viewVec), 0.), 4.);
|
||||
|
||||
color.r = (1. - exp(-density)) * alpha;
|
||||
color.g = sunlightContribution * forwardScatter;
|
||||
color.g = sunlightContribution;
|
||||
color.b *= exp(-density);
|
||||
|
||||
gl_FragColor = vec4(color, 1.0);
|
||||
}
|
||||
|
|
|
@ -1,11 +1,18 @@
|
|||
uniform mat4 mCameraProjInv;
|
||||
uniform mat4 mCameraView;
|
||||
uniform vec3 eyePosition;
|
||||
uniform float f_timeofday;
|
||||
|
||||
varying vec3 relativePosition;
|
||||
varying vec3 viewDirection;
|
||||
|
||||
varying vec2 screenspaceCoordinate;
|
||||
varying float sunStrength;
|
||||
|
||||
float mtsmoothstep(in float edge0, in float edge1, in float x)
|
||||
{
|
||||
float t = clamp((x - edge0) / (edge1 - edge0), 0.0, 1.0);
|
||||
return t * t * (3.0 - 2.0 * t);
|
||||
}
|
||||
|
||||
void main(void)
|
||||
{
|
||||
|
@ -13,5 +20,18 @@ void main(void)
|
|||
vec4 p = mCameraProjInv * inVertexPosition;
|
||||
viewDirection = p.xyz / p.w;
|
||||
relativePosition = (p.xyz / p.w) * mat3(mCameraView);
|
||||
|
||||
if (f_timeofday < 0.21) {
|
||||
sunStrength =
|
||||
(1.0 - mtsmoothstep(0.18, 0.21, f_timeofday));
|
||||
} else if (f_timeofday >= 0.793) {
|
||||
sunStrength =
|
||||
mtsmoothstep(0.793, 0.823, f_timeofday);
|
||||
} else {
|
||||
sunStrength =
|
||||
mtsmoothstep(0.21, 0.26, f_timeofday) *
|
||||
(1.0 - mtsmoothstep(0.743, 0.793, f_timeofday));
|
||||
}
|
||||
|
||||
gl_Position = inVertexPosition;
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue