1
0
Fork 0
mirror of https://github.com/luanti-org/luanti.git synced 2025-06-27 16:36:03 +00:00

Add display_gamma option for client

This commit is contained in:
Craig Robbins 2014-12-14 21:28:08 +10:00
parent 2414580754
commit 3d29be24e0
7 changed files with 108 additions and 42 deletions

View file

@ -18,31 +18,93 @@ with this program; if not, write to the Free Software Foundation, Inc.,
*/
#include "light.h"
#include <math.h>
#include "util/numeric.h"
#ifndef SERVER
#if 1
// Middle-raised variation of a_n+1 = a_n * 0.786
// Length of LIGHT_MAX+1 means LIGHT_MAX is the last value.
// LIGHT_SUN is read as LIGHT_MAX from here.
u8 light_decode_table[LIGHT_MAX+1] =
u8 light_LUT[LIGHT_MAX+1] =
{
8,
11+2,
14+7,
18+10,
22+15,
29+20,
37+20,
47+15,
60+10,
76+7,
97+5,
123+2,
157,
200,
255,
/* Middle-raised variation of a_n+1 = a_n * 0.786
* Length of LIGHT_MAX+1 means LIGHT_MAX is the last value.
* LIGHT_SUN is read as LIGHT_MAX from here.
*/
8,
11+2,
14+7,
18+10,
22+15,
29+20,
37+20,
47+15,
60+10,
76+7,
97+5,
123+2,
157,
200,
255,
};
const u8 *light_decode_table = light_LUT;
/** Initialize or update the light value tables using the specified \p gamma.
* If \p gamma == 1.0 then the light table is linear. Typically values for
* gamma range between 1.8 and 2.2.
*
* @note The value for gamma will be restricted to the range 1.1 <= gamma <= 3.0.
*
* @note This function is not, currently, a simple linear to gamma encoding
* because adjustments are made so that a gamma of 1.8 gives the same
* results as those hardcoded for use by the server.
*/
void set_light_table(float gamma)
{
static const float brightness_step = 255.0f / (LIGHT_MAX + 1);
/* These are adjustment values that are added to the calculated light value
* after gamma is applied. Currently they are used so that given a gamma
* of 1.8 the light values set by this function are the same as those
* hardcoded in the initalizer list for the declaration of light_LUT.
*/
static const int adjustments[LIGHT_MAX + 1] = {
7,
7,
7,
5,
2,
0,
-7,
-20,
-31,
-39,
-43,
-45,
-40,
-25,
0
};
gamma = rangelim(gamma, 1.1, 3.0);
float brightness = brightness_step;
for (size_t i = 0; i < LIGHT_MAX; i++) {
light_LUT[i] = (u8)(255 * powf(brightness / 255.0f, gamma));
light_LUT[i] = rangelim(light_LUT[i] + adjustments[i], 0, 255);
if (i > 1 && light_LUT[i] < light_LUT[i-1])
light_LUT[i] = light_LUT[i-1] + 1;
brightness += brightness_step;
}
light_LUT[LIGHT_MAX] = 255;
}
#endif
#if 0
/*
Made using this and: