1
0
Fork 0
mirror of https://github.com/luanti-org/luanti.git synced 2025-06-27 16:36:03 +00:00

work-in-progress texture atlas optimization

This commit is contained in:
Perttu Ahola 2011-02-10 02:13:03 +02:00
parent 949383a2f7
commit 1704badc30
21 changed files with 1496 additions and 271 deletions

View file

@ -21,10 +21,208 @@ with this program; if not, write to the Free Software Foundation, Inc.,
#define TILE_HEADER
#include "common_irrlicht.h"
//#include "utility.h"
#include "texture.h"
#include "threads.h"
#include "utility.h"
#include <string>
/*
Specifies a texture in an atlas.
This is used to specify single textures also.
This has been designed to be small enough to be thrown around a lot.
*/
struct AtlasPointer
{
u32 id; // Texture id
video::ITexture *atlas; // Atlas in where the texture is
v2f pos; // Position in atlas
v2f size; // Size in atlas
u16 tiled; // X-wise tiling count. If 0, width of atlas is width of image.
AtlasPointer(
u16 id_,
video::ITexture *atlas_=NULL,
v2f pos_=v2f(0,0),
v2f size_=v2f(1,1),
u16 tiled_=1
):
id(id_),
atlas(atlas_),
pos(pos_),
size(size_),
tiled(tiled_)
{
}
bool operator==(const AtlasPointer &other)
{
return (
id == other.id
);
/*return (
id == other.id &&
atlas == other.atlas &&
pos == other.pos &&
size == other.size &&
tiled == other.tiled
);*/
}
float x0(){ return pos.X; }
float x1(){ return pos.X + size.X; }
float y0(){ return pos.Y; }
float y1(){ return pos.Y + size.Y; }
};
/*
An internal variant of the former with more data.
*/
struct SourceAtlasPointer
{
std::string name;
AtlasPointer a;
video::IImage *atlas_img; // The source image of the atlas
// Integer variants of position and size
v2s32 intpos;
v2u32 intsize;
SourceAtlasPointer(
const std::string &name_,
AtlasPointer a_=AtlasPointer(0, NULL),
video::IImage *atlas_img_=NULL,
v2s32 intpos_=v2s32(0,0),
v2u32 intsize_=v2u32(0,0)
):
name(name_),
a(a_),
atlas_img(atlas_img_),
intpos(intpos_),
intsize(intsize_)
{
}
};
/*
Creates and caches textures.
*/
class TextureSource
{
public:
TextureSource(IrrlichtDevice *device);
~TextureSource();
/*
Processes queued texture requests from other threads.
Shall be called from the main thread.
*/
void processQueue();
/*
Example case:
Now, assume a texture with the id 1 exists, and has the name
"stone.png^mineral1".
Then a random thread calls getTextureId for a texture called
"stone.png^mineral1^crack0".
...Now, WTF should happen? Well:
- getTextureId strips off stuff recursively from the end until
the remaining part is found, or nothing is left when
something is stripped out
But it is slow to search for textures by names and modify them
like that?
- ContentFeatures is made to contain ids for the basic plain
textures
- Crack textures can be slow by themselves, but the framework
must be fast.
Example case #2:
- Assume a texture with the id 1 exists, and has the name
"stone.png^mineral1" and is specified as a part of some atlas.
- Now MapBlock::getNodeTile() stumbles upon a node which uses
texture id 1, and finds out that NODEMOD_CRACK must be applied
with progression=0
- It finds out the name of the texture with getTextureName(1),
appends "^crack0" to it and gets a new texture id with
getTextureId("stone.png^mineral1^crack0")
*/
/*
Gets a texture id from cache or
- if main thread, from getTextureIdDirect
- if other thread, adds to request queue and waits for main thread
*/
u32 getTextureId(const std::string &name);
/*
Example names:
"stone.png"
"stone.png^crack2"
"stone.png^blit:mineral_coal.png"
"stone.png^blit:mineral_coal.png^crack1"
- If texture specified by name is found from cache, return the
cached id.
- Otherwise generate the texture, add to cache and return id.
Recursion is used to find out the largest found part of the
texture and continue based on it.
The id 0 points to a NULL texture. It is returned in case of error.
*/
u32 getTextureIdDirect(const std::string &name);
/*
Finds out the name of a cached texture.
*/
std::string getTextureName(u32 id);
/*
If texture specified by the name pointed by the id doesn't
exist, create it, then return the cached texture.
Can be called from any thread. If called from some other thread
and not found in cache, the call is queued to the main thread
for processing.
*/
AtlasPointer getTexture(u32 id);
AtlasPointer getTexture(const std::string &name)
{
return getTexture(getTextureId(name));
}
private:
/*
Build the main texture atlas which contains most of the
textures.
This is called by the constructor.
*/
void buildMainAtlas();
// The id of the thread that is allowed to use irrlicht directly
threadid_t m_main_thread;
// The irrlicht device
IrrlichtDevice *m_device;
// A texture id is index in this array.
// The first position contains a NULL texture.
core::array<SourceAtlasPointer> m_atlaspointer_cache;
// Maps a texture name to an index in the former.
core::map<std::string, u32> m_name_to_id;
// The two former containers are behind this mutex
JMutex m_atlaspointer_cache_mutex;
// Main texture atlas. This is filled at startup and is then not touched.
video::IImage *m_main_atlas_image;
video::ITexture *m_main_atlas_texture;
// Queued texture fetches (to be processed by the main thread)
RequestQueue<std::string, u32, u8, u8> m_get_texture_queue;
};
enum MaterialType{
MATERIAL_ALPHA_NONE,
MATERIAL_ALPHA_VERTEX,
@ -38,12 +236,17 @@ enum MaterialType{
/*
This fully defines the looks of a tile.
The SMaterial of a tile is constructed according to this.
TODO: Change this to use an AtlasPointer
*/
struct TileSpec
{
TileSpec():
texture(0),
alpha(255),
material_type(MATERIAL_ALPHA_NONE),
// Use this so that leaves don't need a separate material
//material_type(MATERIAL_ALPHA_SIMPLE),
material_flags(
MATERIAL_FLAG_BACKFACE_CULLING
)
@ -53,7 +256,7 @@ struct TileSpec
bool operator==(TileSpec &other)
{
return (
spec == other.spec &&
texture == other.texture &&
alpha == other.alpha &&
material_type == other.material_type &&
material_flags == other.material_flags
@ -80,8 +283,14 @@ struct TileSpec
material.BackfaceCulling = (material_flags & MATERIAL_FLAG_BACKFACE_CULLING) ? true : false;
}
// Specification of texture
TextureSpec spec;
// NOTE: Deprecated, i guess?
void setTexturePos(u8 tx_, u8 ty_, u8 tw_, u8 th_)
{
texture.pos = v2f((float)tx_/256.0, (float)ty_/256.0);
texture.size = v2f(((float)tw_ + 1.0)/256.0, ((float)th_ + 1.0)/256.0);
}
AtlasPointer texture;
// Vertex alpha
u8 alpha;
// Material type