mirror of
https://github.com/luanti-org/luanti.git
synced 2025-06-27 16:36:03 +00:00
The new mapgen, noise functions, et al.
This commit is contained in:
parent
736b386554
commit
11afcbff69
23 changed files with 1892 additions and 1037 deletions
703
src/noise.cpp
703
src/noise.cpp
|
@ -21,89 +21,116 @@ with this program; if not, write to the Free Software Foundation, Inc.,
|
|||
#include "noise.h"
|
||||
#include <iostream>
|
||||
#include "debug.h"
|
||||
#include "util/numeric.h"
|
||||
|
||||
#define NOISE_MAGIC_X 1619
|
||||
#define NOISE_MAGIC_Y 31337
|
||||
#define NOISE_MAGIC_Z 52591
|
||||
#define NOISE_MAGIC_X 1619
|
||||
#define NOISE_MAGIC_Y 31337
|
||||
#define NOISE_MAGIC_Z 52591
|
||||
#define NOISE_MAGIC_SEED 1013
|
||||
|
||||
double cos_lookup[16] = {
|
||||
1.0,0.9238,0.7071,0.3826,0,-0.3826,-0.7071,-0.9238,
|
||||
1.0,-0.9238,-0.7071,-0.3826,0,0.3826,0.7071,0.9238
|
||||
float cos_lookup[16] = {
|
||||
1.0, 0.9238, 0.7071, 0.3826, 0, -0.3826, -0.7071, -0.9238,
|
||||
1.0, -0.9238, -0.7071, -0.3826, 0, 0.3826, 0.7071, 0.9238
|
||||
};
|
||||
|
||||
double dotProduct(double vx, double vy, double wx, double wy){
|
||||
return vx*wx+vy*wy;
|
||||
}
|
||||
|
||||
double easeCurve(double t){
|
||||
return t * t * t * (6. * t * t - 15. * t + 10.);
|
||||
}
|
||||
|
||||
double linearInterpolation(double x0, double x1, double t){
|
||||
return x0+(x1-x0)*t;
|
||||
}
|
||||
|
||||
double biLinearInterpolation(double x0y0, double x1y0, double x0y1, double x1y1, double x, double y){
|
||||
double tx = easeCurve(x);
|
||||
double ty = easeCurve(y);
|
||||
/*double tx = x;
|
||||
double ty = y;*/
|
||||
double u = linearInterpolation(x0y0,x1y0,tx);
|
||||
double v = linearInterpolation(x0y1,x1y1,tx);
|
||||
return linearInterpolation(u,v,ty);
|
||||
}
|
||||
|
||||
double triLinearInterpolation(
|
||||
double v000, double v100, double v010, double v110,
|
||||
double v001, double v101, double v011, double v111,
|
||||
double x, double y, double z)
|
||||
{
|
||||
/*double tx = easeCurve(x);
|
||||
double ty = easeCurve(y);
|
||||
double tz = easeCurve(z);*/
|
||||
double tx = x;
|
||||
double ty = y;
|
||||
double tz = z;
|
||||
return(
|
||||
v000*(1-tx)*(1-ty)*(1-tz) +
|
||||
v100*tx*(1-ty)*(1-tz) +
|
||||
v010*(1-tx)*ty*(1-tz) +
|
||||
v110*tx*ty*(1-tz) +
|
||||
v001*(1-tx)*(1-ty)*tz +
|
||||
v101*tx*(1-ty)*tz +
|
||||
v011*(1-tx)*ty*tz +
|
||||
v111*tx*ty*tz
|
||||
);
|
||||
}
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
double noise2d(int x, int y, int seed)
|
||||
{
|
||||
|
||||
//noise poly: p(n) = 60493n^3 + 19990303n + 137612589
|
||||
float noise2d(int x, int y, int seed) {
|
||||
int n = (NOISE_MAGIC_X * x + NOISE_MAGIC_Y * y
|
||||
+ NOISE_MAGIC_SEED * seed) & 0x7fffffff;
|
||||
n = (n>>13)^n;
|
||||
n = (n * (n*n*60493+19990303) + 1376312589) & 0x7fffffff;
|
||||
return 1.0 - (double)n/1073741824;
|
||||
n = (n >> 13) ^ n;
|
||||
n = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff;
|
||||
return 1.f - (float)n / 0x40000000;
|
||||
}
|
||||
|
||||
double noise3d(int x, int y, int z, int seed)
|
||||
{
|
||||
|
||||
float noise3d(int x, int y, int z, int seed) {
|
||||
int n = (NOISE_MAGIC_X * x + NOISE_MAGIC_Y * y + NOISE_MAGIC_Z * z
|
||||
+ NOISE_MAGIC_SEED * seed) & 0x7fffffff;
|
||||
n = (n>>13)^n;
|
||||
n = (n * (n*n*60493+19990303) + 1376312589) & 0x7fffffff;
|
||||
return 1.0 - (double)n/1073741824;
|
||||
n = (n >> 13) ^ n;
|
||||
n = (n * (n * n * 60493 + 19990303) + 1376312589) & 0x7fffffff;
|
||||
return 1.f - (float)n / 0x40000000;
|
||||
}
|
||||
|
||||
|
||||
float dotProduct(float vx, float vy, float wx, float wy) {
|
||||
return vx * wx + vy * wy;
|
||||
}
|
||||
|
||||
|
||||
inline float linearInterpolation(float v0, float v1, float t) {
|
||||
return v0 + (v1 - v0) * t;
|
||||
}
|
||||
|
||||
|
||||
float biLinearInterpolation(float v00, float v10,
|
||||
float v01, float v11,
|
||||
float x, float y) {
|
||||
float tx = easeCurve(x);
|
||||
float ty = easeCurve(y);
|
||||
float u = linearInterpolation(v00, v10, tx);
|
||||
float v = linearInterpolation(v01, v11, tx);
|
||||
return linearInterpolation(u, v, ty);
|
||||
}
|
||||
|
||||
|
||||
float biLinearInterpolationNoEase(float x0y0, float x1y0,
|
||||
float x0y1, float x1y1,
|
||||
float x, float y) {
|
||||
float u = linearInterpolation(x0y0, x1y0, x);
|
||||
float v = linearInterpolation(x0y1, x1y1, x);
|
||||
return linearInterpolation(u, v, y);
|
||||
}
|
||||
|
||||
|
||||
float triLinearInterpolation(
|
||||
float v000, float v100, float v010, float v110,
|
||||
float v001, float v101, float v011, float v111,
|
||||
float x, float y, float z) {
|
||||
float u = biLinearInterpolationNoEase(v000, v100, v010, v110, x, y);
|
||||
float v = biLinearInterpolationNoEase(v001, v101, v011, v111, x, y);
|
||||
return linearInterpolation(u, v, z);
|
||||
}
|
||||
|
||||
|
||||
#if 0
|
||||
double noise2d_gradient(double x, double y, int seed)
|
||||
float triLinearInterpolation(
|
||||
float v000, float v100, float v010, float v110,
|
||||
float v001, float v101, float v011, float v111,
|
||||
float x, float y, float z)
|
||||
{
|
||||
/*float tx = easeCurve(x);
|
||||
float ty = easeCurve(y);
|
||||
float tz = easeCurve(z);*/
|
||||
float tx = x;
|
||||
float ty = y;
|
||||
float tz = z;
|
||||
return(
|
||||
v000 * (1 - tx) * (1 - ty) * (1 - tz) +
|
||||
v100 * tx * (1 - ty) * (1 - tz) +
|
||||
v010 * (1 - tx) * ty * (1 - tz) +
|
||||
v110 * tx * ty * (1 - tz) +
|
||||
v001 * (1 - tx) * (1 - ty) * tz +
|
||||
v101 * tx * (1 - ty) * tz +
|
||||
v011 * (1 - tx) * ty * tz +
|
||||
v111 * tx * ty * tz
|
||||
);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
#if 0
|
||||
float noise2d_gradient(float x, float y, int seed)
|
||||
{
|
||||
// Calculate the integer coordinates
|
||||
int x0 = (x > 0.0 ? (int)x : (int)x - 1);
|
||||
int y0 = (y > 0.0 ? (int)y : (int)y - 1);
|
||||
// Calculate the remaining part of the coordinates
|
||||
double xl = x - (double)x0;
|
||||
double yl = y - (double)y0;
|
||||
float xl = x - (float)x0;
|
||||
float yl = y - (float)y0;
|
||||
// Calculate random cosine lookup table indices for the integer corners.
|
||||
// They are looked up as unit vector gradients from the lookup table.
|
||||
int n00 = (int)((noise2d(x0, y0, seed)+1)*8);
|
||||
|
@ -111,119 +138,126 @@ double noise2d_gradient(double x, double y, int seed)
|
|||
int n01 = (int)((noise2d(x0, y0+1, seed)+1)*8);
|
||||
int n11 = (int)((noise2d(x0+1, y0+1, seed)+1)*8);
|
||||
// Make a dot product for the gradients and the positions, to get the values
|
||||
double s = dotProduct(cos_lookup[n00], cos_lookup[(n00+12)%16], xl, yl);
|
||||
double u = dotProduct(-cos_lookup[n10], cos_lookup[(n10+12)%16], 1.-xl, yl);
|
||||
double v = dotProduct(cos_lookup[n01], -cos_lookup[(n01+12)%16], xl, 1.-yl);
|
||||
double w = dotProduct(-cos_lookup[n11], -cos_lookup[(n11+12)%16], 1.-xl, 1.-yl);
|
||||
float s = dotProduct(cos_lookup[n00], cos_lookup[(n00+12)%16], xl, yl);
|
||||
float u = dotProduct(-cos_lookup[n10], cos_lookup[(n10+12)%16], 1.-xl, yl);
|
||||
float v = dotProduct(cos_lookup[n01], -cos_lookup[(n01+12)%16], xl, 1.-yl);
|
||||
float w = dotProduct(-cos_lookup[n11], -cos_lookup[(n11+12)%16], 1.-xl, 1.-yl);
|
||||
// Interpolate between the values
|
||||
return biLinearInterpolation(s,u,v,w,xl,yl);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if 1
|
||||
double noise2d_gradient(double x, double y, int seed)
|
||||
|
||||
float noise2d_gradient(float x, float y, int seed)
|
||||
{
|
||||
// Calculate the integer coordinates
|
||||
int x0 = (x > 0.0 ? (int)x : (int)x - 1);
|
||||
int y0 = (y > 0.0 ? (int)y : (int)y - 1);
|
||||
int x0 = myfloor(x);
|
||||
int y0 = myfloor(y);
|
||||
// Calculate the remaining part of the coordinates
|
||||
double xl = x - (double)x0;
|
||||
double yl = y - (double)y0;
|
||||
// Get values for corners of cube
|
||||
double v00 = noise2d(x0, y0, seed);
|
||||
double v10 = noise2d(x0+1, y0, seed);
|
||||
double v01 = noise2d(x0, y0+1, seed);
|
||||
double v11 = noise2d(x0+1, y0+1, seed);
|
||||
float xl = x - (float)x0;
|
||||
float yl = y - (float)y0;
|
||||
// Get values for corners of square
|
||||
float v00 = noise2d(x0, y0, seed);
|
||||
float v10 = noise2d(x0+1, y0, seed);
|
||||
float v01 = noise2d(x0, y0+1, seed);
|
||||
float v11 = noise2d(x0+1, y0+1, seed);
|
||||
// Interpolate
|
||||
return biLinearInterpolation(v00,v10,v01,v11,xl,yl);
|
||||
}
|
||||
#endif
|
||||
|
||||
double noise3d_gradient(double x, double y, double z, int seed)
|
||||
|
||||
float noise3d_gradient(float x, float y, float z, int seed)
|
||||
{
|
||||
// Calculate the integer coordinates
|
||||
int x0 = (x > 0.0 ? (int)x : (int)x - 1);
|
||||
int y0 = (y > 0.0 ? (int)y : (int)y - 1);
|
||||
int z0 = (z > 0.0 ? (int)z : (int)z - 1);
|
||||
int x0 = myfloor(x);
|
||||
int y0 = myfloor(y);
|
||||
int z0 = myfloor(z);
|
||||
// Calculate the remaining part of the coordinates
|
||||
double xl = x - (double)x0;
|
||||
double yl = y - (double)y0;
|
||||
double zl = z - (double)z0;
|
||||
float xl = x - (float)x0;
|
||||
float yl = y - (float)y0;
|
||||
float zl = z - (float)z0;
|
||||
// Get values for corners of cube
|
||||
double v000 = noise3d(x0, y0, z0, seed);
|
||||
double v100 = noise3d(x0+1, y0, z0, seed);
|
||||
double v010 = noise3d(x0, y0+1, z0, seed);
|
||||
double v110 = noise3d(x0+1, y0+1, z0, seed);
|
||||
double v001 = noise3d(x0, y0, z0+1, seed);
|
||||
double v101 = noise3d(x0+1, y0, z0+1, seed);
|
||||
double v011 = noise3d(x0, y0+1, z0+1, seed);
|
||||
double v111 = noise3d(x0+1, y0+1, z0+1, seed);
|
||||
float v000 = noise3d(x0, y0, z0, seed);
|
||||
float v100 = noise3d(x0 + 1, y0, z0, seed);
|
||||
float v010 = noise3d(x0, y0 + 1, z0, seed);
|
||||
float v110 = noise3d(x0 + 1, y0 + 1, z0, seed);
|
||||
float v001 = noise3d(x0, y0, z0 + 1, seed);
|
||||
float v101 = noise3d(x0 + 1, y0, z0 + 1, seed);
|
||||
float v011 = noise3d(x0, y0 + 1, z0 + 1, seed);
|
||||
float v111 = noise3d(x0 + 1, y0 + 1, z0 + 1, seed);
|
||||
// Interpolate
|
||||
return triLinearInterpolation(v000,v100,v010,v110,v001,v101,v011,v111,xl,yl,zl);
|
||||
return triLinearInterpolation(v000, v100, v010, v110,
|
||||
v001, v101, v011, v111,
|
||||
xl, yl, zl);
|
||||
}
|
||||
|
||||
double noise2d_perlin(double x, double y, int seed,
|
||||
int octaves, double persistence)
|
||||
|
||||
float noise2d_perlin(float x, float y, int seed,
|
||||
int octaves, float persistence)
|
||||
{
|
||||
double a = 0;
|
||||
double f = 1.0;
|
||||
double g = 1.0;
|
||||
for(int i=0; i<octaves; i++)
|
||||
float a = 0;
|
||||
float f = 1.0;
|
||||
float g = 1.0;
|
||||
for (int i = 0; i < octaves; i++)
|
||||
{
|
||||
a += g * noise2d_gradient(x*f, y*f, seed+i);
|
||||
a += g * noise2d_gradient(x * f, y * f, seed + i);
|
||||
f *= 2.0;
|
||||
g *= persistence;
|
||||
}
|
||||
return a;
|
||||
}
|
||||
|
||||
double noise2d_perlin_abs(double x, double y, int seed,
|
||||
int octaves, double persistence)
|
||||
|
||||
float noise2d_perlin_abs(float x, float y, int seed,
|
||||
int octaves, float persistence)
|
||||
{
|
||||
double a = 0;
|
||||
double f = 1.0;
|
||||
double g = 1.0;
|
||||
for(int i=0; i<octaves; i++)
|
||||
float a = 0;
|
||||
float f = 1.0;
|
||||
float g = 1.0;
|
||||
for (int i = 0; i < octaves; i++)
|
||||
{
|
||||
a += g * fabs(noise2d_gradient(x*f, y*f, seed+i));
|
||||
a += g * fabs(noise2d_gradient(x * f, y * f, seed + i));
|
||||
f *= 2.0;
|
||||
g *= persistence;
|
||||
}
|
||||
return a;
|
||||
}
|
||||
|
||||
double noise3d_perlin(double x, double y, double z, int seed,
|
||||
int octaves, double persistence)
|
||||
|
||||
float noise3d_perlin(float x, float y, float z, int seed,
|
||||
int octaves, float persistence)
|
||||
{
|
||||
double a = 0;
|
||||
double f = 1.0;
|
||||
double g = 1.0;
|
||||
for(int i=0; i<octaves; i++)
|
||||
float a = 0;
|
||||
float f = 1.0;
|
||||
float g = 1.0;
|
||||
for (int i = 0; i < octaves; i++)
|
||||
{
|
||||
a += g * noise3d_gradient(x*f, y*f, z*f, seed+i);
|
||||
a += g * noise3d_gradient(x * f, y * f, z * f, seed + i);
|
||||
f *= 2.0;
|
||||
g *= persistence;
|
||||
}
|
||||
return a;
|
||||
}
|
||||
|
||||
double noise3d_perlin_abs(double x, double y, double z, int seed,
|
||||
int octaves, double persistence)
|
||||
|
||||
float noise3d_perlin_abs(float x, float y, float z, int seed,
|
||||
int octaves, float persistence)
|
||||
{
|
||||
double a = 0;
|
||||
double f = 1.0;
|
||||
double g = 1.0;
|
||||
for(int i=0; i<octaves; i++)
|
||||
float a = 0;
|
||||
float f = 1.0;
|
||||
float g = 1.0;
|
||||
for (int i = 0; i < octaves; i++)
|
||||
{
|
||||
a += g * fabs(noise3d_gradient(x*f, y*f, z*f, seed+i));
|
||||
a += g * fabs(noise3d_gradient(x * f, y * f, z * f, seed + i));
|
||||
f *= 2.0;
|
||||
g *= persistence;
|
||||
}
|
||||
return a;
|
||||
}
|
||||
|
||||
|
||||
// -1->0, 0->1, 1->0
|
||||
double contour(double v)
|
||||
float contour(float v)
|
||||
{
|
||||
v = fabs(v);
|
||||
if(v >= 1.0)
|
||||
|
@ -231,195 +265,276 @@ double contour(double v)
|
|||
return (1.0-v);
|
||||
}
|
||||
|
||||
double noise3d_param(const NoiseParams ¶m, double x, double y, double z)
|
||||
{
|
||||
double s = param.pos_scale;
|
||||
x /= s;
|
||||
y /= s;
|
||||
z /= s;
|
||||
|
||||
if(param.type == NOISE_CONSTANT_ONE)
|
||||
{
|
||||
return 1.0;
|
||||
}
|
||||
else if(param.type == NOISE_PERLIN)
|
||||
{
|
||||
return param.noise_scale*noise3d_perlin(x,y,z, param.seed,
|
||||
param.octaves,
|
||||
param.persistence);
|
||||
}
|
||||
else if(param.type == NOISE_PERLIN_ABS)
|
||||
{
|
||||
return param.noise_scale*noise3d_perlin_abs(x,y,z, param.seed,
|
||||
param.octaves,
|
||||
param.persistence);
|
||||
}
|
||||
else if(param.type == NOISE_PERLIN_CONTOUR)
|
||||
{
|
||||
return contour(param.noise_scale*noise3d_perlin(x,y,z,
|
||||
param.seed, param.octaves,
|
||||
param.persistence));
|
||||
}
|
||||
else if(param.type == NOISE_PERLIN_CONTOUR_FLIP_YZ)
|
||||
{
|
||||
return contour(param.noise_scale*noise3d_perlin(x,z,y,
|
||||
param.seed, param.octaves,
|
||||
param.persistence));
|
||||
}
|
||||
else assert(0);
|
||||
///////////////////////// [ New perlin stuff ] ////////////////////////////
|
||||
|
||||
|
||||
Noise::Noise(NoiseParams *np, int seed, int sx, int sy) {
|
||||
int nlx, nly;
|
||||
float ofactor;
|
||||
|
||||
//maximum possible spread value factor
|
||||
ofactor = (float)(1 << (np->octaves - 1));
|
||||
|
||||
//noise lattice point count
|
||||
//(int)(sz * spread * ofactor) is # of lattice points crossed due to length
|
||||
// + 2 for the two initial endpoints
|
||||
// + 1 for potentially crossing a boundary due to offset
|
||||
nlx = (int)(sx * ofactor / np->spread.X) + 3;
|
||||
nly = (int)(sy * ofactor / np->spread.Y) + 3;
|
||||
|
||||
this->np = np;
|
||||
this->seed = seed;
|
||||
this->sx = sx;
|
||||
this->sy = sy;
|
||||
this->sz = 0;
|
||||
this->noisebuf = new float[nlx * nly];
|
||||
this->buf = new float[sx * sy];
|
||||
this->result = new float[sx * sy];
|
||||
}
|
||||
|
||||
|
||||
Noise::Noise(NoiseParams *np, int seed, int sx, int sy, int sz) {
|
||||
int nlx, nly, nlz;
|
||||
float ofactor;
|
||||
|
||||
ofactor = (float)(1 << (np->octaves - 1));
|
||||
nlx = (int)(sx * ofactor / np->spread.X) + 3;
|
||||
nly = (int)(sy * ofactor / np->spread.Y) + 3;
|
||||
nlz = (int)(sz * ofactor / np->spread.Z) + 3;
|
||||
|
||||
this->np = np;
|
||||
this->seed = seed;
|
||||
this->sx = sx;
|
||||
this->sy = sy;
|
||||
this->sz = sz;
|
||||
this->noisebuf = new float[nlx * nly * nlz];
|
||||
this->buf = new float[sx * sy * sz];
|
||||
this->result = new float[sx * sy * sz];
|
||||
}
|
||||
|
||||
|
||||
Noise::~Noise() {
|
||||
delete[] buf;
|
||||
delete[] result;
|
||||
delete[] noisebuf;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
NoiseBuffer
|
||||
*/
|
||||
* NB: This algorithm is not optimal in terms of space complexity. The entire
|
||||
* integer lattice of noise points could be done as 2 lines instead, and for 3D,
|
||||
* 2 lines + 2 planes.
|
||||
* However, this would require the noise calls to be interposed with the
|
||||
* interpolation loops, which may trash the icache, leading to lower overall
|
||||
* performance.
|
||||
* Another optimization that could save half as many noise calls is to carry over
|
||||
* values from the previous noise lattice as midpoints in the new lattice for the
|
||||
* next octave.
|
||||
*/
|
||||
void Noise::gradientMap2D(float x, float y, float step_x, float step_y, int seed) {
|
||||
float v00, v01, v10, v11, u, v, orig_u;
|
||||
int index, i, j, x0, y0, noisex, noisey;
|
||||
int nlx, nly;
|
||||
|
||||
NoiseBuffer::NoiseBuffer():
|
||||
m_data(NULL)
|
||||
{
|
||||
}
|
||||
x0 = floor(x);
|
||||
y0 = floor(y);
|
||||
u = x - (float)x0;
|
||||
v = y - (float)y0;
|
||||
orig_u = u;
|
||||
|
||||
NoiseBuffer::~NoiseBuffer()
|
||||
{
|
||||
clear();
|
||||
}
|
||||
//calculate noise point lattice
|
||||
|
||||
void NoiseBuffer::clear()
|
||||
{
|
||||
if(m_data)
|
||||
delete[] m_data;
|
||||
m_data = NULL;
|
||||
m_size_x = 0;
|
||||
m_size_y = 0;
|
||||
m_size_z = 0;
|
||||
}
|
||||
nlx = (int)(u + sx * step_x) + 2;
|
||||
nly = (int)(v + sy * step_y) + 2;
|
||||
index = 0;
|
||||
for (j = 0; j != nly; j++)
|
||||
for (i = 0; i != nlx; i++)
|
||||
noisebuf[index++] = noise2d(x0 + i, y0 + j, seed);
|
||||
|
||||
void NoiseBuffer::create(const NoiseParams ¶m,
|
||||
double first_x, double first_y, double first_z,
|
||||
double last_x, double last_y, double last_z,
|
||||
double samplelength_x, double samplelength_y, double samplelength_z)
|
||||
{
|
||||
clear();
|
||||
|
||||
m_start_x = first_x - samplelength_x;
|
||||
m_start_y = first_y - samplelength_y;
|
||||
m_start_z = first_z - samplelength_z;
|
||||
m_samplelength_x = samplelength_x;
|
||||
m_samplelength_y = samplelength_y;
|
||||
m_samplelength_z = samplelength_z;
|
||||
//calculate interpolations
|
||||
noisey = 0;
|
||||
for (j = 0; j != sy; j++) {
|
||||
v00 = noisebuf[noisey * nlx];
|
||||
v10 = noisebuf[noisey * nlx + 1];
|
||||
v01 = noisebuf[(noisey + 1) * nlx];
|
||||
v11 = noisebuf[(noisey + 1) * nlx + 1];
|
||||
|
||||
m_size_x = (last_x - m_start_x)/samplelength_x + 2;
|
||||
m_size_y = (last_y - m_start_y)/samplelength_y + 2;
|
||||
m_size_z = (last_z - m_start_z)/samplelength_z + 2;
|
||||
u = orig_u;
|
||||
noisex = 0;
|
||||
for (i = 0; i != sx; i++) {
|
||||
buf[j * sx + i] = biLinearInterpolation(v00, v10, v01, v11, u, v);
|
||||
u += step_x;
|
||||
if (u >= 1.0) {
|
||||
u -= 1.0;
|
||||
noisex++;
|
||||
v00 = v10;
|
||||
v01 = v11;
|
||||
v10 = noisebuf[noisey * nlx + noisex + 1];
|
||||
v11 = noisebuf[(noisey + 1) * nlx + noisex + 1];
|
||||
}
|
||||
}
|
||||
|
||||
m_data = new double[m_size_x*m_size_y*m_size_z];
|
||||
|
||||
for(int x=0; x<m_size_x; x++)
|
||||
for(int y=0; y<m_size_y; y++)
|
||||
for(int z=0; z<m_size_z; z++)
|
||||
{
|
||||
double xd = (m_start_x + (double)x*m_samplelength_x);
|
||||
double yd = (m_start_y + (double)y*m_samplelength_y);
|
||||
double zd = (m_start_z + (double)z*m_samplelength_z);
|
||||
double a = noise3d_param(param, xd,yd,zd);
|
||||
intSet(x,y,z, a);
|
||||
v += step_y;
|
||||
if (v >= 1.0) {
|
||||
v -= 1.0;
|
||||
noisey++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void NoiseBuffer::multiply(const NoiseParams ¶m)
|
||||
{
|
||||
assert(m_data != NULL);
|
||||
|
||||
for(int x=0; x<m_size_x; x++)
|
||||
for(int y=0; y<m_size_y; y++)
|
||||
for(int z=0; z<m_size_z; z++)
|
||||
{
|
||||
double xd = (m_start_x + (double)x*m_samplelength_x);
|
||||
double yd = (m_start_y + (double)y*m_samplelength_y);
|
||||
double zd = (m_start_z + (double)z*m_samplelength_z);
|
||||
double a = noise3d_param(param, xd,yd,zd);
|
||||
intMultiply(x,y,z, a);
|
||||
void Noise::gradientMap3D(float x, float y, float z,
|
||||
float step_x, float step_y, float step_z,
|
||||
int seed) {
|
||||
float v000, v010, v100, v110;
|
||||
float v001, v011, v101, v111;
|
||||
float u, v, w, orig_u, orig_w;
|
||||
int index, i, j, k, x0, y0, z0, noisex, noisey, noisez;
|
||||
int nlx, nly, nlz;
|
||||
|
||||
x0 = floor(x);
|
||||
y0 = floor(y);
|
||||
z0 = floor(z);
|
||||
u = x - (float)x0;
|
||||
v = y - (float)y0;
|
||||
w = z - (float)z0;
|
||||
orig_u = u;
|
||||
orig_w = w;
|
||||
|
||||
//calculate noise point lattice
|
||||
nlx = (int)(u + sx * step_x) + 2;
|
||||
nly = (int)(v + sy * step_y) + 2;
|
||||
nlz = (int)(v + sy * step_z) + 2;
|
||||
index = 0;
|
||||
for (k = 0; k != nlz; k++)
|
||||
for (j = 0; j != nly; j++)
|
||||
for (i = 0; i != nlx; i++)
|
||||
noisebuf[index++] = noise3d(x0 + i, y0 + j, z0 + k, seed);
|
||||
|
||||
#define index(x, y, z) ((z) * nly * nlx + (y) * nlx + (x))
|
||||
|
||||
//calculate interpolations
|
||||
noisey = 0;
|
||||
noisez = 0;
|
||||
for (k = 0; k != sz; k++) {
|
||||
v000 = noisebuf[index(0, noisey, noisez)];
|
||||
v100 = noisebuf[index(1, noisey, noisez)];
|
||||
v010 = noisebuf[index(0, noisey + 1, noisez)];
|
||||
v110 = noisebuf[index(1, noisey + 1, noisez)];
|
||||
v001 = noisebuf[index(0, noisey, noisez + 1)];
|
||||
v101 = noisebuf[index(1, noisey, noisez + 1)];
|
||||
v011 = noisebuf[index(0, noisey + 1, noisez + 1)];
|
||||
v111 = noisebuf[index(1, noisey + 1, noisez + 1)];
|
||||
|
||||
w = orig_w;
|
||||
noisey = 0;
|
||||
for (j = 0; j != sy; j++) {
|
||||
v000 = noisebuf[index(0, noisey, noisez)];
|
||||
v100 = noisebuf[index(1, noisey, noisez)];
|
||||
v010 = noisebuf[index(0, noisey + 1, noisez)];
|
||||
v110 = noisebuf[index(1, noisey + 1, noisez)];
|
||||
v001 = noisebuf[index(0, noisey, noisez + 1)];
|
||||
v101 = noisebuf[index(1, noisey, noisez + 1)];
|
||||
v011 = noisebuf[index(0, noisey + 1, noisez + 1)];
|
||||
v111 = noisebuf[index(1, noisey + 1, noisez + 1)];
|
||||
|
||||
u = orig_u;
|
||||
noisex = 0;
|
||||
for (i = 0; i != sx; i++) {
|
||||
buf[j * sx + i] = triLinearInterpolation(
|
||||
v000, v100, v010, v110,
|
||||
v001, v101, v011, v111,
|
||||
u, v, w);
|
||||
u += step_x;
|
||||
if (u >= 1.0) {
|
||||
u -= 1.0;
|
||||
noisex++;
|
||||
v000 = v100;
|
||||
v010 = v110;
|
||||
v100 = noisebuf[index(noisex + 1, noisey, noisez)];
|
||||
v110 = noisebuf[index(noisex + 1, noisey + 1, noisez)];
|
||||
v001 = v101;
|
||||
v011 = v111;
|
||||
v101 = noisebuf[index(noisex + 1, noisey, noisez + 1)];
|
||||
v111 = noisebuf[index(noisex + 1, noisey + 1, noisez + 1)];
|
||||
}
|
||||
}
|
||||
|
||||
v += step_y;
|
||||
if (v >= 1.0) {
|
||||
v -= 1.0;
|
||||
noisey++;
|
||||
}
|
||||
}
|
||||
|
||||
w += step_z;
|
||||
if (w >= 1.0) {
|
||||
w -= 1.0;
|
||||
noisez++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Deprecated
|
||||
void NoiseBuffer::create(int seed, int octaves, double persistence,
|
||||
bool abs,
|
||||
double first_x, double first_y, double first_z,
|
||||
double last_x, double last_y, double last_z,
|
||||
double samplelength_x, double samplelength_y, double samplelength_z)
|
||||
{
|
||||
NoiseParams param;
|
||||
param.type = abs ? NOISE_PERLIN_ABS : NOISE_PERLIN;
|
||||
param.seed = seed;
|
||||
param.octaves = octaves;
|
||||
param.persistence = persistence;
|
||||
|
||||
create(param, first_x, first_y, first_z,
|
||||
last_x, last_y, last_z,
|
||||
samplelength_x, samplelength_y, samplelength_z);
|
||||
float *Noise::perlinMap2D(float x, float y) {
|
||||
float a = 0.0, f = 1.0, g = 1.0;
|
||||
int i, j, index, oct;
|
||||
|
||||
x /= np->spread.X;
|
||||
y /= np->spread.Y;
|
||||
|
||||
memset(result, 0, sizeof(float) * sx * sy);
|
||||
|
||||
for (oct = 0; oct < np->octaves; oct++) {
|
||||
gradientMap2D(x * f, y * f,
|
||||
f / np->spread.X, f / np->spread.Y,
|
||||
seed + np->seed + oct);
|
||||
|
||||
index = 0;
|
||||
for (j = 0; j != sy; j++) {
|
||||
for (i = 0; i != sx; i++) {
|
||||
result[index] += g * buf[index];
|
||||
index++;
|
||||
}
|
||||
}
|
||||
|
||||
f *= 2.0;
|
||||
g *= np->persist;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
void NoiseBuffer::intSet(int x, int y, int z, double d)
|
||||
{
|
||||
int i = m_size_x*m_size_y*z + m_size_x*y + x;
|
||||
assert(i >= 0);
|
||||
assert(i < m_size_x*m_size_y*m_size_z);
|
||||
m_data[i] = d;
|
||||
|
||||
float *Noise::perlinMap3D(float x, float y, float z) {
|
||||
float a = 0.0, f = 1.0, g = 1.0;
|
||||
int i, j, k, index, oct;
|
||||
|
||||
x /= np->spread.X;
|
||||
y /= np->spread.Y;
|
||||
z /= np->spread.Z;
|
||||
|
||||
memset(result, 0, sizeof(float) * sx * sy * sz);
|
||||
|
||||
for (oct = 0; oct < np->octaves; oct++) {
|
||||
gradientMap3D(x * f, y * f, z * f,
|
||||
f / np->spread.X, f / np->spread.Y, f / np->spread.Z,
|
||||
seed + np->seed + oct);
|
||||
|
||||
index = 0;
|
||||
for (k = 0; k != sz; k++) {
|
||||
for (j = 0; j != sy; j++) {
|
||||
for (i = 0; i != sx; i++) {
|
||||
result[index] += g * buf[index];
|
||||
index++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
f *= 2.0;
|
||||
g *= np->persist;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
void NoiseBuffer::intMultiply(int x, int y, int z, double d)
|
||||
{
|
||||
int i = m_size_x*m_size_y*z + m_size_x*y + x;
|
||||
assert(i >= 0);
|
||||
assert(i < m_size_x*m_size_y*m_size_z);
|
||||
m_data[i] = m_data[i] * d;
|
||||
}
|
||||
|
||||
double NoiseBuffer::intGet(int x, int y, int z)
|
||||
{
|
||||
int i = m_size_x*m_size_y*z + m_size_x*y + x;
|
||||
assert(i >= 0);
|
||||
assert(i < m_size_x*m_size_y*m_size_z);
|
||||
return m_data[i];
|
||||
}
|
||||
|
||||
double NoiseBuffer::get(double x, double y, double z)
|
||||
{
|
||||
x -= m_start_x;
|
||||
y -= m_start_y;
|
||||
z -= m_start_z;
|
||||
x /= m_samplelength_x;
|
||||
y /= m_samplelength_y;
|
||||
z /= m_samplelength_z;
|
||||
// Calculate the integer coordinates
|
||||
int x0 = (x > 0.0 ? (int)x : (int)x - 1);
|
||||
int y0 = (y > 0.0 ? (int)y : (int)y - 1);
|
||||
int z0 = (z > 0.0 ? (int)z : (int)z - 1);
|
||||
// Calculate the remaining part of the coordinates
|
||||
double xl = x - (double)x0;
|
||||
double yl = y - (double)y0;
|
||||
double zl = z - (double)z0;
|
||||
// Get values for corners of cube
|
||||
double v000 = intGet(x0, y0, z0);
|
||||
double v100 = intGet(x0+1, y0, z0);
|
||||
double v010 = intGet(x0, y0+1, z0);
|
||||
double v110 = intGet(x0+1, y0+1, z0);
|
||||
double v001 = intGet(x0, y0, z0+1);
|
||||
double v101 = intGet(x0+1, y0, z0+1);
|
||||
double v011 = intGet(x0, y0+1, z0+1);
|
||||
double v111 = intGet(x0+1, y0+1, z0+1);
|
||||
// Interpolate
|
||||
return triLinearInterpolation(v000,v100,v010,v110,v001,v101,v011,v111,xl,yl,zl);
|
||||
}
|
||||
|
||||
/*bool NoiseBuffer::contains(double x, double y, double z)
|
||||
{
|
||||
x -= m_start_x;
|
||||
y -= m_start_y;
|
||||
z -= m_start_z;
|
||||
x /= m_samplelength_x;
|
||||
y /= m_samplelength_y;
|
||||
z /= m_samplelength_z;
|
||||
if(x <= 0.0 || x >= m_size_x)
|
||||
}*/
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue