1
0
Fork 0
mirror of https://github.com/luanti-org/luanti.git synced 2025-06-27 16:36:03 +00:00
luanti/irr/src/CGLTFMeshFileLoader.cpp

942 lines
32 KiB
C++
Raw Normal View History

// Minetest
// SPDX-License-Identifier: LGPL-2.1-or-later
#include "CGLTFMeshFileLoader.h"
#include "SMaterialLayer.h"
#include "coreutil.h"
#include "CSkinnedMesh.h"
2024-01-06 20:21:04 +01:00
#include "IAnimatedMesh.h"
#include "IReadFile.h"
2024-01-06 20:21:04 +01:00
#include "irrTypes.h"
#include "irr_ptr.h"
#include "matrix4.h"
#include "path.h"
#include "quaternion.h"
#include "vector2d.h"
#include "vector3d.h"
#include "os.h"
#include <array>
#include <cstddef>
#include <cstring>
#include <limits>
#include <memory>
#include <optional>
#include <stdexcept>
2024-01-06 20:21:04 +01:00
#include <tuple>
#include <utility>
#include <variant>
#include <vector>
namespace irr {
/* Notes on the coordinate system.
*
* glTF uses a right-handed coordinate system where +Z is the
* front-facing axis, and Irrlicht uses a left-handed coordinate
* system where -Z is the front-facing axis.
* We convert between them by mirroring the mesh across the X axis.
* Doing this correctly requires negating the Z coordinate on
* vertex positions and normals, and reversing the winding order
* of the vertex indices.
*/
// Right-to-left handedness conversions
template <typename T>
static inline T convertHandedness(const T &t);
template <>
core::vector3df convertHandedness(const core::vector3df &p)
{
return core::vector3df(p.X, p.Y, -p.Z);
}
2024-01-06 20:21:04 +01:00
template <>
core::quaternion convertHandedness(const core::quaternion &q)
{
return core::quaternion(q.X, q.Y, -q.Z, q.W);
}
template <>
core::matrix4 convertHandedness(const core::matrix4 &mat)
{
// Base transformation between left & right handed coordinate systems.
static const core::matrix4 invertZ = core::matrix4(
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, -1, 0,
0, 0, 0, 1);
// Convert from left-handed to right-handed,
// then apply mat,
// then convert from right-handed to left-handed.
// Both conversions just invert Z.
return invertZ * mat * invertZ;
}
namespace scene {
using SelfType = CGLTFMeshFileLoader;
template <class T>
SelfType::Accessor<T>
SelfType::Accessor<T>::sparseIndices(const tiniergltf::GlTF &model,
const tiniergltf::AccessorSparseIndices &indices,
const std::size_t count)
{
const auto &view = model.bufferViews->at(indices.bufferView);
const auto byteStride = view.byteStride.value_or(indices.elementSize());
const auto &buffer = model.buffers->at(view.buffer);
const auto source = buffer.data.data() + view.byteOffset + indices.byteOffset;
return SelfType::Accessor<T>(source, byteStride, count);
}
template <class T>
SelfType::Accessor<T>
SelfType::Accessor<T>::sparseValues(const tiniergltf::GlTF &model,
const tiniergltf::AccessorSparseValues &values,
const std::size_t count,
const std::size_t defaultByteStride)
{
const auto &view = model.bufferViews->at(values.bufferView);
const auto byteStride = view.byteStride.value_or(defaultByteStride);
const auto &buffer = model.buffers->at(view.buffer);
const auto source = buffer.data.data() + view.byteOffset + values.byteOffset;
return SelfType::Accessor<T>(source, byteStride, count);
}
template <class T>
SelfType::Accessor<T>
SelfType::Accessor<T>::base(const tiniergltf::GlTF &model, std::size_t accessorIdx)
{
const auto &accessor = model.accessors->at(accessorIdx);
if (!accessor.bufferView.has_value()) {
return Accessor<T>(accessor.count);
}
const auto &view = model.bufferViews->at(accessor.bufferView.value());
const auto byteStride = view.byteStride.value_or(accessor.elementSize());
const auto &buffer = model.buffers->at(view.buffer);
const auto source = buffer.data.data() + view.byteOffset + accessor.byteOffset;
return Accessor<T>(source, byteStride, accessor.count);
}
template <class T>
SelfType::Accessor<T>
SelfType::Accessor<T>::make(const tiniergltf::GlTF &model, std::size_t accessorIdx)
{
const auto &accessor = model.accessors->at(accessorIdx);
if (accessor.componentType != getComponentType() || accessor.type != getType())
throw std::runtime_error("invalid accessor");
const auto base = Accessor<T>::base(model, accessorIdx);
if (accessor.sparse.has_value()) {
std::vector<T> vec(accessor.count);
for (std::size_t i = 0; i < accessor.count; ++i) {
vec[i] = base.get(i);
}
const auto overriddenCount = accessor.sparse->count;
const auto indicesAccessor = ([&]() -> AccessorVariant<u8, u16, u32> {
switch (accessor.sparse->indices.componentType) {
case tiniergltf::AccessorSparseIndices::ComponentType::UNSIGNED_BYTE:
return Accessor<u8>::sparseIndices(model, accessor.sparse->indices, overriddenCount);
case tiniergltf::AccessorSparseIndices::ComponentType::UNSIGNED_SHORT:
return Accessor<u16>::sparseIndices(model, accessor.sparse->indices, overriddenCount);
case tiniergltf::AccessorSparseIndices::ComponentType::UNSIGNED_INT:
return Accessor<u32>::sparseIndices(model, accessor.sparse->indices, overriddenCount);
}
throw std::logic_error("invalid enum value");
})();
const auto valuesAccessor = Accessor<T>::sparseValues(model,
accessor.sparse->values, overriddenCount,
accessor.bufferView.has_value()
? model.bufferViews->at(*accessor.bufferView).byteStride.value_or(accessor.elementSize())
: accessor.elementSize());
for (std::size_t i = 0; i < overriddenCount; ++i) {
u32 index;
std::visit([&](auto &&acc) { index = acc.get(i); }, indicesAccessor);
if (index >= accessor.count)
throw std::runtime_error("index out of bounds");
vec[index] = valuesAccessor.get(i);
}
return Accessor<T>(vec, accessor.count);
}
return base;
}
#define ACCESSOR_TYPES(T, U, V) \
template <> \
constexpr tiniergltf::Accessor::Type SelfType::Accessor<T>::getType() \
{ \
return tiniergltf::Accessor::Type::U; \
} \
template <> \
constexpr tiniergltf::Accessor::ComponentType SelfType::Accessor<T>::getComponentType() \
{ \
return tiniergltf::Accessor::ComponentType::V; \
}
#define VEC_ACCESSOR_TYPES(T, U, N) \
template <> \
constexpr tiniergltf::Accessor::Type SelfType::Accessor<std::array<T, N>>::getType() \
{ \
return tiniergltf::Accessor::Type::VEC##N; \
} \
template <> \
constexpr tiniergltf::Accessor::ComponentType SelfType::Accessor<std::array<T, N>>::getComponentType() \
{ \
return tiniergltf::Accessor::ComponentType::U; \
} \
template <> \
std::array<T, N> SelfType::rawget(const char *ptr) \
{ \
std::array<T, N> res; \
for (int i = 0; i < N; ++i) \
res[i] = rawget<T>(ptr + sizeof(T) * i); \
return res; \
}
#define ACCESSOR_PRIMITIVE(T, U) \
ACCESSOR_TYPES(T, SCALAR, U) \
VEC_ACCESSOR_TYPES(T, U, 2) \
VEC_ACCESSOR_TYPES(T, U, 3) \
VEC_ACCESSOR_TYPES(T, U, 4)
ACCESSOR_PRIMITIVE(f32, FLOAT)
ACCESSOR_PRIMITIVE(u8, UNSIGNED_BYTE)
ACCESSOR_PRIMITIVE(u16, UNSIGNED_SHORT)
ACCESSOR_PRIMITIVE(u32, UNSIGNED_INT)
ACCESSOR_TYPES(core::vector3df, VEC3, FLOAT)
2024-01-06 20:21:04 +01:00
ACCESSOR_TYPES(core::quaternion, VEC4, FLOAT)
ACCESSOR_TYPES(core::matrix4, MAT4, FLOAT)
template <class T>
T SelfType::Accessor<T>::get(std::size_t i) const
{
// Buffer-based accessor: Read directly from the buffer.
if (std::holds_alternative<BufferSource>(source)) {
const auto bufsrc = std::get<BufferSource>(source);
return rawget<T>(bufsrc.ptr + i * bufsrc.byteStride);
}
// Array-based accessor (used for sparse accessors): Read from array.
if (std::holds_alternative<std::vector<T>>(source)) {
return std::get<std::vector<T>>(source)[i];
}
// Default-initialized accessor.
// We differ slightly from glTF here in that
// we default-initialize quaternions and matrices properly,
// but this does not cause any discrepancies for valid glTF models.
std::get<std::tuple<>>(source);
return T();
}
template <typename T>
T SelfType::rawget(const char *ptr)
{
T dest;
std::memcpy(&dest, ptr, sizeof(dest));
#ifdef __BIG_ENDIAN__
return os::Byteswap::byteswap(dest);
#else
return dest;
#endif
}
// Note that these "more specialized templates" should win.
template <>
core::matrix4 SelfType::rawget(const char *ptr)
{
core::matrix4 mat;
for (u8 i = 0; i < 16; ++i) {
mat[i] = rawget<f32>(ptr + i * sizeof(f32));
}
return mat;
}
template <>
core::vector3df SelfType::rawget(const char *ptr)
{
return core::vector3df(
rawget<f32>(ptr),
rawget<f32>(ptr + sizeof(f32)),
rawget<f32>(ptr + 2 * sizeof(f32)));
}
template <>
core::quaternion SelfType::rawget(const char *ptr)
{
return core::quaternion(
rawget<f32>(ptr),
rawget<f32>(ptr + sizeof(f32)),
rawget<f32>(ptr + 2 * sizeof(f32)),
rawget<f32>(ptr + 3 * sizeof(f32)));
}
template <std::size_t N>
SelfType::NormalizedValuesAccessor<N>
SelfType::createNormalizedValuesAccessor(
const tiniergltf::GlTF &model,
const std::size_t accessorIdx)
{
const auto &acc = model.accessors->at(accessorIdx);
switch (acc.componentType) {
case tiniergltf::Accessor::ComponentType::UNSIGNED_BYTE:
return Accessor<std::array<u8, N>>::make(model, accessorIdx);
case tiniergltf::Accessor::ComponentType::UNSIGNED_SHORT:
return Accessor<std::array<u16, N>>::make(model, accessorIdx);
case tiniergltf::Accessor::ComponentType::FLOAT:
return Accessor<std::array<f32, N>>::make(model, accessorIdx);
default:
throw std::runtime_error("invalid component type");
}
}
template <std::size_t N>
std::array<f32, N> SelfType::getNormalizedValues(
const NormalizedValuesAccessor<N> &accessor,
const std::size_t i)
{
std::array<f32, N> values;
if (std::holds_alternative<Accessor<std::array<u8, N>>>(accessor)) {
const auto u8s = std::get<Accessor<std::array<u8, N>>>(accessor).get(i);
for (u8 i = 0; i < N; ++i)
values[i] = static_cast<f32>(u8s[i]) / std::numeric_limits<u8>::max();
} else if (std::holds_alternative<Accessor<std::array<u16, N>>>(accessor)) {
const auto u16s = std::get<Accessor<std::array<u16, N>>>(accessor).get(i);
for (u8 i = 0; i < N; ++i)
values[i] = static_cast<f32>(u16s[i]) / std::numeric_limits<u16>::max();
} else {
values = std::get<Accessor<std::array<f32, N>>>(accessor).get(i);
for (u8 i = 0; i < N; ++i) {
if (values[i] < 0 || values[i] > 1)
throw std::runtime_error("invalid normalized value");
}
}
return values;
}
bool SelfType::isALoadableFileExtension(
const io::path& filename) const
{
2024-09-05 17:16:55 +02:00
return core::hasFileExtension(filename, "gltf") ||
core::hasFileExtension(filename, "glb");
}
/**
* Entry point into loading a GLTF model.
*/
IAnimatedMesh* SelfType::createMesh(io::IReadFile* file)
{
const char *filename = file->getFileName().c_str();
try {
tiniergltf::GlTF model = parseGLTF(file);
irr_ptr<CSkinnedMesh> mesh(new CSkinnedMesh());
MeshExtractor extractor(std::move(model), mesh.get());
try {
extractor.load();
for (const auto &warning : extractor.getWarnings()) {
os::Printer::log(filename, warning.c_str(), ELL_WARNING);
}
return mesh.release();
} catch (const std::runtime_error &e) {
os::Printer::log("error converting gltf to irrlicht mesh", e.what(), ELL_ERROR);
}
} catch (const std::runtime_error &e) {
os::Printer::log("error parsing gltf", e.what(), ELL_ERROR);
}
return nullptr;
}
static void transformVertices(std::vector<video::S3DVertex> &vertices, const core::matrix4 &transform)
{
for (auto &vertex : vertices) {
// Apply scaling, rotation and rotation (in that order) to the position.
transform.transformVect(vertex.Pos);
// For the normal, we do not want to apply the translation.
vertex.Normal = transform.rotateAndScaleVect(vertex.Normal);
// Renormalize (length might have been affected by scaling).
vertex.Normal.normalize();
}
}
static void checkIndices(const std::vector<u16> &indices, const std::size_t nVerts)
{
for (u16 index : indices) {
if (index >= nVerts)
throw std::runtime_error("index out of bounds");
}
}
static std::vector<u16> generateIndices(const std::size_t nVerts)
{
std::vector<u16> indices(nVerts);
for (std::size_t i = 0; i < nVerts; i += 3) {
// Reverse winding order per triangle
indices[i] = i + 2;
indices[i + 1] = i + 1;
indices[i + 2] = i;
}
return indices;
}
using Wrap = tiniergltf::Sampler::Wrap;
static video::E_TEXTURE_CLAMP convertTextureWrap(const Wrap wrap) {
switch (wrap) {
case Wrap::REPEAT:
return video::ETC_REPEAT;
case Wrap::CLAMP_TO_EDGE:
return video::ETC_CLAMP_TO_EDGE;
case Wrap::MIRRORED_REPEAT:
return video::ETC_MIRROR;
default:
throw std::runtime_error("invalid sampler wrapping mode");
}
}
2024-01-06 20:21:04 +01:00
void SelfType::MeshExtractor::addPrimitive(
const tiniergltf::MeshPrimitive &primitive,
const std::optional<std::size_t> skinIdx,
CSkinnedMesh::SJoint *parent)
{
auto vertices = getVertices(primitive);
if (!vertices.has_value())
return; // "When positions are not specified, client implementations SHOULD skip primitives rendering"
const auto n_vertices = vertices->size();
// Excludes the max value for consistency.
if (n_vertices >= std::numeric_limits<u16>::max())
throw std::runtime_error("too many vertices");
// Apply the global transform along the parent chain.
transformVertices(*vertices, parent->GlobalMatrix);
auto maybeIndices = getIndices(primitive);
std::vector<u16> indices;
if (maybeIndices.has_value()) {
indices = std::move(*maybeIndices);
checkIndices(indices, vertices->size());
} else {
// Non-indexed geometry
indices = generateIndices(vertices->size());
}
m_irr_model->addMeshBuffer(
new SSkinMeshBuffer(std::move(*vertices), std::move(indices)));
const auto meshbufNr = m_irr_model->getMeshBufferCount() - 1;
auto *meshbuf = m_irr_model->getMeshBuffer(meshbufNr);
if (primitive.material.has_value()) {
const auto &material = m_gltf_model.materials->at(*primitive.material);
if (material.pbrMetallicRoughness.has_value()) {
const auto &texture = material.pbrMetallicRoughness->baseColorTexture;
if (texture.has_value()) {
m_irr_model->setTextureSlot(meshbufNr, static_cast<u32>(texture->index));
const auto samplerIdx = m_gltf_model.textures->at(texture->index).sampler;
if (samplerIdx.has_value()) {
auto &sampler = m_gltf_model.samplers->at(*samplerIdx);
auto &layer = meshbuf->getMaterial().TextureLayers[0];
layer.TextureWrapU = convertTextureWrap(sampler.wrapS);
layer.TextureWrapV = convertTextureWrap(sampler.wrapT);
}
}
}
}
if (!skinIdx.has_value()) {
// No skin => all vertices belong entirely to their parent
for (std::size_t v = 0; v < n_vertices; ++v) {
auto *weight = m_irr_model->addWeight(parent);
weight->buffer_id = meshbufNr;
weight->vertex_id = v;
weight->strength = 1.0f;
}
return;
}
const auto &skin = m_gltf_model.skins->at(*skinIdx);
const auto &attrs = primitive.attributes;
const auto &joints = attrs.joints;
if (!joints.has_value())
return;
const auto &weights = attrs.weights;
for (std::size_t set = 0; set < joints->size(); ++set) {
const auto jointAccessor = ([&]() -> ArrayAccessorVariant<4, u8, u16> {
const auto idx = joints->at(set);
const auto &acc = m_gltf_model.accessors->at(idx);
switch (acc.componentType) {
case tiniergltf::Accessor::ComponentType::UNSIGNED_BYTE:
return Accessor<std::array<u8, 4>>::make(m_gltf_model, idx);
case tiniergltf::Accessor::ComponentType::UNSIGNED_SHORT:
return Accessor<std::array<u16, 4>>::make(m_gltf_model, idx);
default:
throw std::runtime_error("invalid component type");
}
})();
const auto weightAccessor = createNormalizedValuesAccessor<4>(m_gltf_model, weights->at(set));
for (std::size_t v = 0; v < n_vertices; ++v) {
std::array<u16, 4> jointIdxs;
if (std::holds_alternative<Accessor<std::array<u8, 4>>>(jointAccessor)) {
const auto jointIdxsU8 = std::get<Accessor<std::array<u8, 4>>>(jointAccessor).get(v);
jointIdxs = {jointIdxsU8[0], jointIdxsU8[1], jointIdxsU8[2], jointIdxsU8[3]};
} else if (std::holds_alternative<Accessor<std::array<u16, 4>>>(jointAccessor)) {
jointIdxs = std::get<Accessor<std::array<u16, 4>>>(jointAccessor).get(v);
}
std::array<f32, 4> strengths = getNormalizedValues(weightAccessor, v);
// 4 joints per set
for (std::size_t in_set = 0; in_set < 4; ++in_set) {
u16 jointIdx = jointIdxs[in_set];
f32 strength = strengths[in_set];
if (strength == 0)
continue;
CSkinnedMesh::SWeight *weight = m_irr_model->addWeight(m_loaded_nodes.at(skin.joints.at(jointIdx)));
weight->buffer_id = meshbufNr;
weight->vertex_id = v;
weight->strength = strength;
}
}
}
}
/**
* Load up the rawest form of the model. The vertex positions and indices.
* Documentation: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#meshes
* If material is undefined, then a default material MUST be used.
2024-01-06 20:21:04 +01:00
*/
void SelfType::MeshExtractor::deferAddMesh(
const std::size_t meshIdx,
2024-01-06 20:21:04 +01:00
const std::optional<std::size_t> skinIdx,
CSkinnedMesh::SJoint *parent)
{
m_mesh_loaders.emplace_back([=] {
for (std::size_t pi = 0; pi < getPrimitiveCount(meshIdx); ++pi) {
const auto &primitive = m_gltf_model.meshes->at(meshIdx).primitives.at(pi);
addPrimitive(primitive, skinIdx, parent);
}
2024-01-06 20:21:04 +01:00
});
}
// Base transformation between left & right handed coordinate systems.
// This just inverts the Z axis.
static const core::matrix4 leftToRight = core::matrix4(
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, -1, 0,
0, 0, 0, 1
);
static const core::matrix4 rightToLeft = leftToRight;
2024-01-06 20:21:04 +01:00
static core::matrix4 loadTransform(const tiniergltf::Node::Matrix &m, CSkinnedMesh::SJoint *joint)
{
// Note: Under the hood, this casts these doubles to floats.
2024-01-06 20:21:04 +01:00
core::matrix4 mat = convertHandedness(core::matrix4(
m[0], m[1], m[2], m[3],
m[4], m[5], m[6], m[7],
m[8], m[9], m[10], m[11],
2024-01-06 20:21:04 +01:00
m[12], m[13], m[14], m[15]));
// Decompose the matrix into translation, scale, and rotation.
joint->Animatedposition = mat.getTranslation();
auto scale = mat.getScale();
joint->Animatedscale = scale;
core::matrix4 inverseScale;
inverseScale.setScale(core::vector3df(
scale.X == 0 ? 0 : 1 / scale.X,
scale.Y == 0 ? 0 : 1 / scale.Y,
scale.Z == 0 ? 0 : 1 / scale.Z));
core::matrix4 axisNormalizedMat = inverseScale * mat;
joint->Animatedrotation = axisNormalizedMat.getRotationDegrees();
// Invert the rotation because it is applied using `getMatrix_transposed`,
// which again inverts.
joint->Animatedrotation.makeInverse();
return mat;
}
2024-01-06 20:21:04 +01:00
static core::matrix4 loadTransform(const tiniergltf::Node::TRS &trs, CSkinnedMesh::SJoint *joint)
{
const auto &trans = trs.translation;
const auto &rot = trs.rotation;
const auto &scale = trs.scale;
core::matrix4 transMat;
2024-01-06 20:21:04 +01:00
joint->Animatedposition = convertHandedness(core::vector3df(trans[0], trans[1], trans[2]));
transMat.setTranslation(joint->Animatedposition);
core::matrix4 rotMat;
joint->Animatedrotation = convertHandedness(core::quaternion(rot[0], rot[1], rot[2], rot[3]));
core::quaternion(joint->Animatedrotation).getMatrix_transposed(rotMat);
joint->Animatedscale = core::vector3df(scale[0], scale[1], scale[2]);
core::matrix4 scaleMat;
2024-01-06 20:21:04 +01:00
scaleMat.setScale(joint->Animatedscale);
return transMat * rotMat * scaleMat;
}
2024-01-06 20:21:04 +01:00
static core::matrix4 loadTransform(std::optional<std::variant<tiniergltf::Node::Matrix, tiniergltf::Node::TRS>> transform,
CSkinnedMesh::SJoint *joint) {
if (!transform.has_value()) {
return core::matrix4();
}
2024-01-06 20:21:04 +01:00
return std::visit([joint](const auto &t) { return loadTransform(t, joint); }, *transform);
}
void SelfType::MeshExtractor::loadNode(
const std::size_t nodeIdx,
2024-01-06 20:21:04 +01:00
CSkinnedMesh::SJoint *parent)
{
const auto &node = m_gltf_model.nodes->at(nodeIdx);
auto *joint = m_irr_model->addJoint(parent);
2024-01-06 20:21:04 +01:00
const core::matrix4 transform = loadTransform(node.transform, joint);
joint->LocalMatrix = transform;
joint->GlobalMatrix = parent ? parent->GlobalMatrix * joint->LocalMatrix : joint->LocalMatrix;
if (node.name.has_value()) {
joint->Name = node.name->c_str();
}
2024-01-06 20:21:04 +01:00
m_loaded_nodes[nodeIdx] = joint;
if (node.mesh.has_value()) {
2024-01-06 20:21:04 +01:00
deferAddMesh(*node.mesh, node.skin, joint);
}
if (node.children.has_value()) {
for (const auto &child : *node.children) {
loadNode(child, joint);
}
}
}
2024-01-06 20:21:04 +01:00
void SelfType::MeshExtractor::loadNodes()
{
2024-01-06 20:21:04 +01:00
m_loaded_nodes = std::vector<CSkinnedMesh::SJoint *>(m_gltf_model.nodes->size());
std::vector<bool> isChild(m_gltf_model.nodes->size());
for (const auto &node : *m_gltf_model.nodes) {
if (!node.children.has_value())
continue;
for (const auto &child : *node.children) {
isChild[child] = true;
}
}
// Load all nodes that aren't children.
// Children will be loaded by their parent nodes.
for (std::size_t i = 0; i < m_gltf_model.nodes->size(); ++i) {
if (!isChild[i]) {
loadNode(i, nullptr);
}
}
}
2024-01-06 20:21:04 +01:00
void SelfType::MeshExtractor::loadSkins()
{
if (!m_gltf_model.skins.has_value())
return;
for (const auto &skin : *m_gltf_model.skins) {
if (!skin.inverseBindMatrices.has_value())
continue;
const auto accessor = Accessor<core::matrix4>::make(m_gltf_model, *skin.inverseBindMatrices);
if (accessor.getCount() < skin.joints.size())
throw std::runtime_error("accessor contains too few matrices");
for (std::size_t i = 0; i < skin.joints.size(); ++i) {
m_loaded_nodes.at(skin.joints[i])->GlobalInversedMatrix = convertHandedness(accessor.get(i));
}
}
}
void SelfType::MeshExtractor::loadAnimation(const std::size_t animIdx)
{
const auto &anim = m_gltf_model.animations->at(animIdx);
for (const auto &channel : anim.channels) {
const auto &sampler = anim.samplers.at(channel.sampler);
if (sampler.interpolation != tiniergltf::AnimationSampler::Interpolation::LINEAR)
throw std::runtime_error("unsupported interpolation, only linear interpolation is supported");
2024-01-06 20:21:04 +01:00
const auto inputAccessor = Accessor<f32>::make(m_gltf_model, sampler.input);
const auto n_frames = inputAccessor.getCount();
if (!channel.target.node.has_value())
throw std::runtime_error("no animated node");
const auto &joint = m_loaded_nodes.at(*channel.target.node);
switch (channel.target.path) {
case tiniergltf::AnimationChannelTarget::Path::TRANSLATION: {
const auto outputAccessor = Accessor<core::vector3df>::make(m_gltf_model, sampler.output);
for (std::size_t i = 0; i < n_frames; ++i) {
auto *key = m_irr_model->addPositionKey(joint);
key->frame = inputAccessor.get(i);
key->position = convertHandedness(outputAccessor.get(i));
}
break;
}
case tiniergltf::AnimationChannelTarget::Path::ROTATION: {
const auto outputAccessor = Accessor<core::quaternion>::make(m_gltf_model, sampler.output);
for (std::size_t i = 0; i < n_frames; ++i) {
auto *key = m_irr_model->addRotationKey(joint);
key->frame = inputAccessor.get(i);
key->rotation = convertHandedness(outputAccessor.get(i));
}
break;
}
case tiniergltf::AnimationChannelTarget::Path::SCALE: {
const auto outputAccessor = Accessor<core::vector3df>::make(m_gltf_model, sampler.output);
for (std::size_t i = 0; i < n_frames; ++i) {
auto *key = m_irr_model->addScaleKey(joint);
key->frame = inputAccessor.get(i);
key->scale = outputAccessor.get(i);
}
break;
}
case tiniergltf::AnimationChannelTarget::Path::WEIGHTS:
throw std::runtime_error("no support for morph animations");
}
}
}
void SelfType::MeshExtractor::load()
{
if (m_gltf_model.extensionsRequired)
throw std::runtime_error("model requires extensions, but we support none");
if (!(m_gltf_model.buffers.has_value()
&& m_gltf_model.bufferViews.has_value()
&& m_gltf_model.accessors.has_value()
&& m_gltf_model.meshes.has_value()
&& m_gltf_model.nodes.has_value())) {
throw std::runtime_error("missing required fields");
2024-01-06 20:21:04 +01:00
}
if (m_gltf_model.images.has_value())
warn("embedded images are not supported");
try {
loadNodes();
for (const auto &load_mesh : m_mesh_loaders) {
load_mesh();
}
loadSkins();
// Load the first animation, if there is one.
if (m_gltf_model.animations.has_value()) {
if (m_gltf_model.animations->size() > 1)
warn("multiple animations are not supported");
loadAnimation(0);
m_irr_model->setAnimationSpeed(1);
2024-01-06 20:21:04 +01:00
}
} catch (const std::out_of_range &e) {
throw std::runtime_error(e.what());
} catch (const std::bad_optional_access &e) {
throw std::runtime_error(e.what());
2024-01-06 20:21:04 +01:00
}
2024-01-06 20:21:04 +01:00
m_irr_model->finalize();
}
/**
* Extracts GLTF mesh indices.
*/
std::optional<std::vector<u16>> SelfType::MeshExtractor::getIndices(
const tiniergltf::MeshPrimitive &primitive) const
{
const auto accessorIdx = primitive.indices;
if (!accessorIdx.has_value())
return std::nullopt; // non-indexed geometry
const auto accessor = ([&]() -> AccessorVariant<u8, u16, u32> {
const auto &acc = m_gltf_model.accessors->at(*accessorIdx);
switch (acc.componentType) {
case tiniergltf::Accessor::ComponentType::UNSIGNED_BYTE:
return Accessor<u8>::make(m_gltf_model, *accessorIdx);
case tiniergltf::Accessor::ComponentType::UNSIGNED_SHORT:
return Accessor<u16>::make(m_gltf_model, *accessorIdx);
case tiniergltf::Accessor::ComponentType::UNSIGNED_INT:
return Accessor<u32>::make(m_gltf_model, *accessorIdx);
default:
throw std::runtime_error("invalid component type");
}
})();
const auto count = std::visit([](auto &&a) { return a.getCount(); }, accessor);
std::vector<u16> indices;
for (std::size_t i = 0; i < count; ++i) {
// TODO (low-priority, maybe never) also reverse winding order based on determinant of global transform
// FIXME this hack also reverses triangle draw order
std::size_t elemIdx = count - i - 1; // reverse index order
u16 index;
// Note: glTF forbids the max value for each component type.
if (std::holds_alternative<Accessor<u8>>(accessor)) {
index = std::get<Accessor<u8>>(accessor).get(elemIdx);
if (index == std::numeric_limits<u8>::max())
throw std::runtime_error("invalid index");
} else if (std::holds_alternative<Accessor<u16>>(accessor)) {
index = std::get<Accessor<u16>>(accessor).get(elemIdx);
if (index == std::numeric_limits<u16>::max())
throw std::runtime_error("invalid index");
2024-12-04 18:19:12 +01:00
} else {
_IRR_DEBUG_BREAK_IF(!std::holds_alternative<Accessor<u32>>(accessor));
u32 indexWide = std::get<Accessor<u32>>(accessor).get(elemIdx);
// Use >= here for consistency.
if (indexWide >= std::numeric_limits<u16>::max())
throw std::runtime_error("index too large (>= 65536)");
index = static_cast<u16>(indexWide);
}
indices.push_back(index);
}
return indices;
}
/**
* Create a vector of video::S3DVertex (model data) from a mesh & primitive index.
*/
std::optional<std::vector<video::S3DVertex>> SelfType::MeshExtractor::getVertices(
const tiniergltf::MeshPrimitive &primitive) const
{
const auto &attributes = primitive.attributes;
const auto positionAccessorIdx = attributes.position;
if (!positionAccessorIdx.has_value()) {
// "When positions are not specified, client implementations SHOULD skip primitive's rendering"
return std::nullopt;
}
std::vector<video::S3DVertex> vertices;
const auto vertexCount = m_gltf_model.accessors->at(*positionAccessorIdx).count;
vertices.resize(vertexCount);
copyPositions(*positionAccessorIdx, vertices);
const auto normalAccessorIdx = attributes.normal;
if (normalAccessorIdx.has_value()) {
copyNormals(normalAccessorIdx.value(), vertices);
}
// TODO verify that the automatic normal recalculation done in Minetest indeed works correctly
const auto &texcoords = attributes.texcoord;
if (texcoords.has_value()) {
const auto tCoordAccessorIdx = texcoords->at(0);
copyTCoords(tCoordAccessorIdx, vertices);
}
return vertices;
}
/**
* Get the amount of meshes that a model contains.
*/
std::size_t SelfType::MeshExtractor::getMeshCount() const
{
return m_gltf_model.meshes->size();
}
/**
* Get the amount of primitives that a mesh in a model contains.
*/
std::size_t SelfType::MeshExtractor::getPrimitiveCount(
const std::size_t meshIdx) const
{
return m_gltf_model.meshes->at(meshIdx).primitives.size();
}
/**
* Streams vertex positions raw data into usable buffer via reference.
* Buffer: ref Vector<video::S3DVertex>
*/
void SelfType::MeshExtractor::copyPositions(
const std::size_t accessorIdx,
std::vector<video::S3DVertex>& vertices) const
{
const auto accessor = Accessor<core::vector3df>::make(m_gltf_model, accessorIdx);
for (std::size_t i = 0; i < accessor.getCount(); i++) {
vertices[i].Pos = convertHandedness(accessor.get(i));
}
}
/**
* Streams normals raw data into usable buffer via reference.
* Buffer: ref Vector<video::S3DVertex>
*/
void SelfType::MeshExtractor::copyNormals(
const std::size_t accessorIdx,
std::vector<video::S3DVertex>& vertices) const
{
const auto accessor = Accessor<core::vector3df>::make(m_gltf_model, accessorIdx);
for (std::size_t i = 0; i < accessor.getCount(); ++i) {
vertices[i].Normal = convertHandedness(accessor.get(i));
}
}
/**
* Streams texture coordinate raw data into usable buffer via reference.
* Buffer: ref Vector<video::S3DVertex>
*/
void SelfType::MeshExtractor::copyTCoords(
const std::size_t accessorIdx,
std::vector<video::S3DVertex>& vertices) const
{
const auto componentType = m_gltf_model.accessors->at(accessorIdx).componentType;
if (componentType == tiniergltf::Accessor::ComponentType::FLOAT) {
// If floats are used, they need not be normalized: Wrapping may take effect.
const auto accessor = Accessor<std::array<f32, 2>>::make(m_gltf_model, accessorIdx);
for (std::size_t i = 0; i < accessor.getCount(); ++i) {
vertices[i].TCoords = core::vector2d<f32>(accessor.get(i));
}
} else {
const auto accessor = createNormalizedValuesAccessor<2>(m_gltf_model, accessorIdx);
const auto count = std::visit([](auto &&a) { return a.getCount(); }, accessor);
for (std::size_t i = 0; i < count; ++i) {
vertices[i].TCoords = core::vector2d<f32>(getNormalizedValues(accessor, i));
}
}
}
/**
* This is where the actual model's GLTF file is loaded and parsed by tiniergltf.
*/
tiniergltf::GlTF SelfType::parseGLTF(io::IReadFile* file)
{
2024-09-05 17:16:55 +02:00
const bool isGlb = core::hasFileExtension(file->getFileName(), "glb");
auto size = file->getSize();
if (size < 0) // this can happen if `ftell` fails
throw std::runtime_error("error reading file");
if (size == 0)
throw std::runtime_error("file is empty");
std::unique_ptr<char[]> buf(new char[size + 1]);
if (file->read(buf.get(), size) != static_cast<std::size_t>(size))
throw std::runtime_error("file ended prematurely");
// We probably don't need this, but add it just to be sure.
buf[size] = '\0';
try {
2024-09-05 17:16:55 +02:00
if (isGlb)
return tiniergltf::readGlb(buf.get(), size);
else
return tiniergltf::readGlTF(buf.get(), size);
} catch (const std::out_of_range &e) {
throw std::runtime_error(e.what());
} catch (const std::bad_optional_access &e) {
throw std::runtime_error(e.what());
}
}
} // namespace scene
} // namespace irr